How do you make the number seven even?
Remove the s!
Which king loved fractions?
"Henry the "1/8
What do you get if you divide the circumference of a jack-o-lantern by its diameter?
Pumpkin Pi!
Why can’t you trust a math teacher holding graphing paper?
They must be plotting something
"Why did " 1/5"th go to the masseuse?"
Because he was two-tenths!
Use the angle and magnitude to find the vector
theta=22^o
||v||=8
<8cos(22),8sin(22)>
<7.42,2.997>
Find and Graph the vector from the initial point (5,-2) and terminal point (2,-4)
<-3,-2>
"Find " u_2 if u=<4,2> and proj_vu=<2,1>
<2,1>
Make a table for -2<t<2 for the following parametric equations
x=2t-3
y=t^2+1
t x y
-2 -7 5
-1 -5 2
0. -3. 1
1. -1. 2
2. 1. 5
How are the points listed for polar coordinates?
(r,theta)
r=radius
theta="angle"
Given the vector <3,5>, Find the magnitude and angle
||v||=sqrt34
theta=arccos(3/sqrt34)
theta=59.04^o
Find the dot product of <2,3> and <-1,6>
16
"Find " u_2 if u=<5,3> and proj_vu=<3.2,1.7>
<1.8,1.3>
Make a table for -2<t<2 for the following parametric equations
x=3t+2
y=t^3-5
t. x. y
-2. -4. -13
-1. -1. -6
0. 2. -5
1. 5. -4
2. 8. 3
When graphing polar coordinates, what do you do if r is negative?
Go the opposite direction from the origin on the line created by the angle
Use the angle and magnitude to find the vector
theta=56^o
||v||=4
<4cos(56),4sin(56)>
<2.24,3.32>
Find the angle between two vectors u=<-1,3> and v=<2,4>
45o
"Find "proj_vu " if u=<2,3> and v=<4,6>
proj_vu=1/2<4,6>
proj_vu=<2,3>
Eliminate the parameter for the following parametric equations
x=2t-3
y=t^2+1
y=((x+3)/2)^2+1
Graph the polar coordinate
(4,60^o)
On 60o angle, 4 away from origin
(In Q1)
Given the vector <-2,-4>, Find the magnitude and angle
||v||=sqrt20
theta=arccos(2/sqrt20)
theta=63.43^o" in Q1"
angle=180+63.43
angle=243.43^o
Find the angle between two vectors u=<-4,5> and v=<3,3>
83.66o
"Find "proj_vu " if u=<1,3> and v=<5,4>
<2.07,1.66>
Eliminate the parameter for the following parametric equations
x=3t+2
y=t^3-5
y=((x-2)/3)^3-5
Graph the polar coordinate
(-3,300^o)
3 circles away from origin, on 300o line in opposite direction
(In Q2)