Attributes of Graph
Evaluating Functions
Triangle Trigonometry
Unit Circle
Trig graphs/transformations
100

Determine the global maximum and minimum value of the function f?


What is Global maximum of 3 at x = 5

What is Global minimum of 2.3 at x=0


100

Given f(x) = 8x+9, find f(7).

A.) 60

B.) 63

C.) 65

D.) 68

What is C.) 65

100

Write formulas for sin, cos, tan.

What is Sin: Opposite/Hypotenuse

            Cos: Adjacent/Hypotenuse

            Tan: Opposite/Adjacent

100

Write the equation represented by the graph.

A.) y=sinx

B.) y= cosx

C.) y = sin^-1 x

D.) y = cos^-1x

What is B.) y = cosx

100

According to the unit circle, in which 2 quadrants is tangent always positive, and which 2 quadrants is sin negative?

A) tan + = II & IV, sin - = III & IV

B.) tan + = I & III, sin - = III & II

C.) tan + = I & IV, sin - = I & III

D.) tan + = I & III, sin - = III & IV

What is D.) tan + = I & III, sin - = III & IV

200

The graph of the function f(x) is shown below. Determine all jump discontinuity?

A). x = -1, X = 4

B). x = -4, x = 2

C). x = 3, x = 5

D) x = -2, x = -1

What is B). x = -4, x = 2

200

Given f(x) = 8x²+2x-10, and g(x)= x+19, find the value of g(f(-2)).

Write it in polynomial (simplest form).

A.) 37

B.) 40

C.) 50

D.) 29

What is A.) 37

200

Solve for the missing side (x) of the right triangle.

A.) 35.5

B.) -31

C.) 29.2

D.) 30.2

What is D.) 30.2

200

Determine what is the period. y = 177sin (80πt - π/3)

A.) 40

B.) 2/40

C.) 1/40

D.) 30


What is C.) 1/40

200

find all angles, 0° ≤ θ < 360°, that solve the following equation. sin(x) = -1/2

A.) x = 30° & 150°

B.) x = 135° & 225°

C.) x = 210° & 330°

D.) x = 45° & 315°

What is C.) x = 210° & 330°

300

Decide if the following function is even, odd, or neither?

f(x) = x⁵ + 4x⁵

A). Even

B). Neither

C). Odd

What is C.) Odd

300

Solve for g(f(g(f(-3))))

f(x) = x+6

g(x) = 6/x 

A.) 0.55

B.) 0.75

C.) 0.45

D.) 0.85

What is B.) 0.75

300

Calculate the measure of the missing angle.

A.) 30.5°

B.) 40°

C.) 65.7°

D.) 70°

What is A.) 30.5°

300

For the rotation 1040, find the coterminal angle from 0∘≤θ<360∘, the quadrant, and the reference angle.

The coterminal angle is ___°, which lies in Quadrant ___, with a reference angle of ___°.

What is the coterminal angle is _320__°, which lies in Quadrant _IV__, with a reference angle of _40__°.

300

Simplify to a single trig function.

sec^2 θ ⋅ cot^2 θ

A.) sin^2 θ

B.) csc^2 θ

C.) sec^2 θ

D.) cos^2 θ

What is B.) csc^2 θ

400

Write the equation for the piecewise function.


What is 2x-3   for  x < -2

            x-1   for  -2 ≤ x < 3

           -1/3x+4   for   x ≥ 3
                

400

Given f(x) = x²+20x+8, and g(x)= 3x+5, find f(x) ∘ g(x).

Write it in polynomial form (simplest form).

A.) 50x²+22x+5

B.) 65x²+124x+40

C.) 6x³+60x²+100x+20

D.) 3x³+65x²+124x+40

What is D.) 3x^3+65x²+124x+40

400

Solve for c using Law of Sine.

A.) 14.4

B.) 7.5

C.) 11.79

D.) 12.29

What is C.) 11.79

400

Find the exact value of sec 5π/6 in simplest form.

A.) -4√3/3

B.) -2√3/3

C.) 2√3/3

D.) 4√3/3

What is B) -2√3/3

400

Solve the trigonometric equation.

4sin^2x - 3 = 0

A.) 2π/3, π/3, 4π/3, 5π/3

B.) 5π/6, π/3

C.) 2π/3, π/3, 5π/6, π/6

D.) 2π/3, 5π/3

What is A). 2π/3, π/3, 4π/3, 5π/3

500

Determine the following features.

1.) Discontinuity

2.) End behaviors

3.) Domain & Range

4.) Asymptotes

What is

Discontinuity: Infinite discontinuity at x=-2

End Behaviors: As x --> -∞, f(x) --> 3 

                       As x--> ∞, f(x) --> 3

Domain: ( -∞, -2) U (-2, ∞)

Range: ( -∞, 3) U (3, ∞)

Asymptotes: VA: -2

                   HA: 3

500

Find the inverse of f(x)= 4x-7/9x

A.) -6/5x-4

B.) -7/9x+4

C.) -6/5x+4

D.) -7/9x-4

What is D.) -7/9x-4

500

Alicia is flying a kite, holding her hands at a distance of 4.5 feet above the ground. She measures the angle of elevation from her hand to the kite to be 20°. If the kite is 30 feet above the ground. How many feet long is the string from the kite to her hands?

What is 87.7

500

Which equation does the graph below represent?

A.) y = 3sin(1(x+0))+1

B.) y = 4sin(1(x+0))+1

C.) y = 4sin(1(x+1))+1

D.) y = 3sin(1(x+1))+1

ANSWER: A.) y = 3sin(1(x+0))+1

500

Find all the angles of this quadratic equation below.

4sec^2 θ - 36 = 0

A.) 70.5°, 250.5°, 109.47°, 289.47°

B.) 80.5°, 250.5°, 105.3°, 290.47°

C.) 80.5°, 245.5°, 115.45°, 275.47°

D.) No Solution

What is A.) 70.5°, 250.5°, 109.47°, 289.47°