Sin, Cos, Tan
Csc, Sec, Cot
Identities
Equations
Graphs
100

sin(pi/3)=

sqrt3/2

100

csc(pi/6)=

2

100

sin^2x+cos^2x=

1

100

cosx=sqrt2/2; x=

pi/4, (7pi)/4

100

What function is this

Sinx

200

cos^-1(-1)=

pi 

200

sec((5pi)/6)=

-2/sqrt3

200

cscx*cosx=

cotx

200

2sinx+1=-1; x=

(3pi)/2

200

What's the function?

cotx

300

tan((2pi)/3)=

-sqrt3

300

cot((7pi)/6)=

sqrt3

300

1+cot^2x=

csc^2x

300

Find all solutions on the interval [0, 2π]

cos2x=1/2

pi/6, 5pi/6, 7pi/6, 11pi/6

300

Identify the first two vertical asymptotes

cot(x/2);  0<=x

x=0, 2pi

400

sin((-17pi)/6)=

-1/2

400

sec((19pi)/3)=

2

400

sin((3pi)/4+pi/6)=

(sqrt6-sqrt2)/4

400

2sin^2x-sinx-1=0; x=

x=pi/2, 7pi/6, 11pi/6

400

Determine the amplitude and period of the function

Amplitude = 3

Period=π

500

Write an equation to model the position of point P:

The height of the center of a windmill is 14 feet above the ground. Point P is at the end of an arm, which is 6 feet long. Point P starts directly above the center and completes one rotation every 4 seconds.

6cos((pit)/2)+14

6sin(pi/2(t+1))+14

500

Give the coordinates of the first local minimum and first local maximum of 

4csc(2x); 0<x

min=(pi/4, 4)

max=((3pi)/4, -4)

500

2cos^2x-1=

cos2x

1-2sin^2x

cos^2x-sin^2x

500

1+cosx=sin^2x; x=

x=pi/2, pi, 3pi/2

500

Graph (and label 4 points) for the following function

3sec(pix)