Lines in a Plane
Functions
Domain
Graphs of Functions
Transformations of Graphs
100

The slope m, between two points (x1,y1) and (x2,y2).

What is m=

(y_2 -y_1)/(x_2-x_1

100

Do these ordered pairs represent a function?

{(-3,7),(2,6),(1,9),(4,6)}

Yes, each input value has exactly one output value.

100

Find the domain of f(x)=(x+3)3 -6

All real numbers 

(-oo,oo)

100

True of false

The domain of a function, [3,7) includes the point at x=7.

False 

100

What kind of transformation does f(x+5) represent? 

Left 5 units 
200

Point Slope form of a line

y-y1=m(x-x1)

200

Does the equation represent y as a function?

x=-y+5 

Yes, the equation is a function. 

200

Find the domain of 

f(x)=root(x)

using the graph 

[0,oo)

or x>=0 

200

Graphically, we test for functions by using the 

The vertical line test 

200

What is the parent graph of this function? 

g(x)= 5 sqrt(x-3) -1


f(x)= sqrt(x)

300

Write the equation of a line that passes through the point (-5,4) and has a slope of m=2

y=2x+14

300

Evaluate 

q(t)=(2t^2+3)/(t^2)

at t=3

g(3)=7/3

300

Find the domain of 

g(x)=root3(x-4)

All real numbers

(-oo,oo)

300

 Is this function even, odd, or neither? 

f(x)=x^3-2x^2+5

Neither

300

Graph f(x) = (x+2)and describe its transformation from its parent graph. 

Left 2 units 

400

Determine the slope and y-intercept (if possible) of 

2x-5y+10=0

m=-2/5  b=-2

400

Evaluate the function 

g(x)=x^2 -8x +3  at g(x+5)

x^2 +2x-12

400

Find the domain of 

h(x)=1/x - 3/(x+2)

x!= 0,-2

(-oo,-2)U(-2,0)U(0,oo)

400

Is this function even, odd, or neither? 

Even 

400

Describe the transformation that happens from 

f(x) =xand h(x)= -(x2) +4

A reflection across the x-axis and then a vertical shift up 4

500

Write the equation of a line that is parallel to 3x-2y=6 and passes through the point (1,-4).

y= -2/3x-10/3

500

Find the difference quotient 

[f(x+h)-f(x)]/h

of 

f(x)=2x^2-x

2h+4x-1

500

Find the domain of 

z(x)=sqrt( x-4) /(2x-6)

x>=4

[4,oo)

500

Graph the function and then estimate the relative minimum or maximum. 

f(x)=x^2-4x-5

Relative minimum (2,-9)

500

Graph f(x)=|x| and g(x) = -|x-4|-7