Function Characteristics
Inverse & Compositions
Rational Functions
Exponential Functions
Logarithms
100

Find the average rate of change over the interval [-3, 1].

(-3, 40) and (1, 20)

(y_2-y_1)/(x_2-x_1)=(20-40)/(1-(-3))=-20/4

AROC=-5

100

Determine  f^-1(f(5)) for the function below. 

f(x)=1/2x-3

By definition f^-1(f(5))=5

100

Determine the value of x in the equation below. 

(x-3)/(4x)=2/3

(3)(x-3)=(2)(4x)

3x-9=8x

-9=5x

x=-9/5

100

Rewrite the power below in rational form.

z^(2/7)

root(7)(z^2)

100

What is the value of y in the equation below?

log_y 64=3

y = 4

200

State the domain of the graph below. 

(-\infty,4)\cup(4,\infty)

200

Find the inverse of the function below. 

g(x)=5x^2-4

y=5x^2-4

x=5y^2-4

x+4=5y^2

(x+4)/5=y^2

y=sqrt((x+4)/5)

200

Simplify:

(x^2-9)/(x^2-3x)\div(x^2+x-6)/(5x)

KCF:

(x^2-9)/(x^2-3x)\times(5x)/(x^2+x-6)

((x+3)(x-3))/(x(x-3))\times(5x)/((x+3)(x-2))

5/(x-2)

200

Determine the equation for the function in the table below. 

y=a(b)^x

b=12/24=1/2 or 0.5

a=48

y=48(1/2)^x

200

Expand the logarithm:

log(5^2x^7)

2log(5)+7log(x)

300

Determine the roots of the equation below. 

y=x^3-13x-12

x = 4

x = -1

x = -3

300

What is the value of  h(f(6)) ?

f(6)=-2

h(-2)=(-2)^2-(-2)+3

h(-2)=4+4+3

h(-2)=11

300

Determine the coordinates of the removeable discontinuity. 

f(x)=(x^2-9)/(x^2-x-12)

f(x)=((x-3)(x+3))/((x-4)(x+3))

f(x)=(x-3)/(x-4)

RM: x=-3

f(-3)=(-3-3)/(-3-4)=(-6)/-7=6/7

(-3, 6/7)

300

Element X is a radioactive isotope such that every 13 years, its mass decreases by half. Given that the initial mass of a sample of Element X is 8800 grams, how much of the element would remain after 25 years, to the nearest tenth of a gram?

A(25)=8800(1/2)^(25/13)

A(25)=2320.5

300

Determine the solution(s) to the equation below. 

log(x^2-x)=log(20)

x^2-x=20

x^2-x-20=0

(x-5)(x+4)=0

x=5, x=-4

400

Determine the domain of the function below. 

f(x)=(x^2-4)/(x^2-3x-10)

f(x)=((x+2)(x-2))/((x-5)(x+2))

(-\infty,-2)\cup(-2,5)\cup(5,\infty)

400

What is the value of  h(f(g^(-1)(7))) ?

g^(-1)(7)=4

f(4)=2

h(2)=(2^2)-(2)+3=4-2+3

h(2)=5

400

Solve for m:

m/(m-2)+6/(m+4)=(4m+4)/(m^2+2m-8)

m/(m-2)+6/(m+4)=(4m+4)/((m+4)(m-2))

(m(m+4))/((m-2)(m+4))+(6(m-2))/((m=4)(m-2))=(4m+4)/((m+4)(m-2))

m(m+4)+6(m-2)=4m+4

m^2+4m+6m-12=4m+4

m^2+6m-16=0

(m+8)(m-2)

m=-8, m=2

m=-8

400

Solve for x:

(1/27)^(2x-1)=(81)^(x+5)

(3^-3)^(2x-1)=(3^4)^(x+5)

3^(-6x+3)=3^(4x+20)

-6x+3=4x+20

3=10x+20

-17=10x

x=-17/10

400

Juele invested $7,300 in an account paying an interest rate of 1.5% compounded quarterly. Assuming no deposits or withdrawals are made, how long would it take, to the nearest tenth of a year, for the value of the account to reach $8,560?

8560=7300(1+.015/4)^(4t)

1.17=(1+.015/4)^(4t)

log_(1+.015/4)(1.17)=4t

42.5=4t

t=10.6