How many zeros (x-intercepts) can a quadratic function have?
2, 1, or none
The value of "a" for a graph of a quadratic function opening downward.
negative
The coordinates of the y-intercept for the quadratic function:
y=-2x2 + 5x - 7
(0,-7)
If the x-intercepts of a function are x = 6 and x=12, what is the Axis of Symmetry (x-value of the vertex)?
x = 9
is y = x2 - 8x - 3 a function?
Yes
The shape of the graph of a quadratic function.
a parabola
The vertex of the quadratic function y = 5x2 + 10x - 2 is a ____________________ point.
minimum
Find the zeros (x-intercepts) of the following:
y = x2 - 8x - 20
x = 10 and x = -2
The vertex for this quadratic function:
y = x2 - 8x - 3
(4, -19)
Evaluate this function with f(2):
f(x) = 3x2 + 2x - 16
f(2) = 0
The name of the line that divides a quadratic function exactly in half.
axis of symmetry
What is the y-intercept of the equation:
y=2x^2+16x-2
y=-2
Characteristic of the parabola when the a value is between 0 and 1.
The coordinates of the y-intercept and x-intercepts for the quadratic function:
y=3x2 + 2x - 1
y-intercept (0, -1) and x-intercepts (-1, 0) & (0.33, 0)
Evaluate this function with f(-5):
f(x) = 2x3 + 15x
f(-5) = -325
The name of the point on a quadratic function that will be the maximum or minimum of the function.
vertex
Find the zero(s) of the equation
y=x^2+6x+9
x=3 (3,0)
Find the vertex for the quadratic function:
y = x2 + 10x + 6
(-5, -19)
vertex form of a quadratic function
f(x) = a(x - h)2 + k
Evaluate this function with f(7):
f(x) = -x2 + 3x
f(7) = -28
What is the axis of symmetry of the equation:
y=2x^2+16x-2
x=4
For : y = x2 - 6x + 5
a) state the x-intercepts
b) state the vertex
x = 5 and x = 1
Vertex (3, -4)
The coordinates of the vertex for this quadratic function:
y = x2 - 4x + 8
(2, 4)
value/s of the variable that makes a quadratic equation true
roots/solutions
How do you know if a table of values is a function or not?
If each input (x-value) has only one output (y-value), then it is a function