y = x² - 4x - 7
y = (x-2)² - 11
Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an (�,�)(x,y) point.
y =-x² - 16x - 57
(-8,3)
x² - 10x - 4 = -2x - 4
x=0
x=8
x²−10x+16
(x-2)(x-8)
Find the y intercept of 2x²−20x+42
(0,42)
x² + 9x + 1
y = (x+4.5)² - 19.25
x² - 2x + 4
(1,3)
x² - 10x - 6 = -2x -6
x=0
x=8
x²+5x-6
Find the zeros of 3(x+1)(x+7)
x=-1
x=-7
give us the vertex and vertex form
x² - 8x +15
(x-4)² - 1
(4, -1)
-2x² + 8x
(2,8)
x² - 6x - 64 = -6x
x={8,-8}
3x²+20x+25
(3x+5)(x+5)
Find the x intercept
3(x−5)(x+1)
x=5
x=−1
2x² + 12x +13
2(x+3)² - 5
2x² + 12x + 36
(-3,18)
x²-9x-20=-2x-2
x={-2,9}
5x²+27x+28
(5x+7)(x+4)
Find the vertex of
2(x−2)²−50
(2,-50)
y = -5x² + 80x - 313
y = -5(x-8)² + 7
4x² + 48x + 160
x = -6
A company sells widgets. The amount of profit, y, made by the company, is related to the selling price of each widget, x, by the given equation. Using this equation, find out the maximum amount of profit the company can make, to the nearest dollar.
-4x²+141x-703
y=$540→Max profit
5x²−18x+9
(5x-3)(x-3)
Find the Vertex
3x²+12x−36
(-6,0)