Vertex
Zeros
Zeros by Factor
FOIL
Translations
100

Find the vertex:

g(x) = (x+3)2 + 2

(-3, 2)

100

Find the zeros if f(x) = x2 + 5x + 4

(x+1)(x+4)

x = -1 and x = -4

100

Factor the following to find the zeros:
        p(x) = x2 + 7x +12

(x+3)(x+4)

x = -3 and -4

100

Rewrite the following expression as a single polynomial in simplest form:

               (x+1)(x+2)

x2+3x+2

100

Name the shift:

           f(x) => f(x) + 2

2 units UP

200

Find the vertex:

p(x) = (x-2)- 1

(2, -1)

200

Find the zeros if p(x) = x2 + 6x -7

(x+7)(x - 1)

x = -7 and 1

200

Factor the following to find the zeros:
        p(x) = x2 + 10x +16

(x+2)(x+8)

x = -2 and -8

200

Rewrite the following expression as a single polynomial in simplest form:

               (x+2)(x+6)

x2+8x+12

200

Name the shift:

           f(x) => f(x - 4) 

4 units RIGHT

300

Find the vertex:

f(x) = x- 2x + 3

(1, 2)

300

Find the zeros if x2 - 4x + 3

(x-1)(x-3)

x = 1 and x =3

300

Factor the following to find the zeros:
        p(x) = x2 - x - 12

(x - 4)(x+3)

x = 4 and -3

300

Rewrite the following expression as a single polynomial in simplest form:

               (x-1)(x+4)

x2+3x-4

300

Name the shift:

           f(x) => f(x+2) + 3

2 units LEFT and 3 units UP

400

Find the vertex:

g(x) = x2 + 4x - 2

(-2, -6)

400

Find the zeros if p(x) = x- 6x + 5

(x-1)(x-5)

x = 1 and x = 5

400

Factor the following to find the zeros:
        p(x) = x2 - 7x + 12

(x - 3)(x - 4)

x = 3 and 4

400

Rewrite the following expression as a single polynomial in simplest form:

               (x-3)(x-5)

x2-8x+15

400

Name the shift:

           f(x) => f(x-4) + 3

4 units RIGHT, and 3 units UP

500

Find the vertex:

p(x) = 2x2 -4x +4

(1, 2)

500

Find the zeros if p(x) = x- 6x + 9

(x-3)(x-3) = (x-3)2

x = 3 only
(Vertex touches x -axis)

500

Factor the following to find the zeros:
        p(x) = x2 - 6x + 8

(x -2)(x - 4)

x = 2 and 4

500

Rewrite the following expression as a single polynomial in simplest form:

               (x-4)(x-6)

x2-10x+24

500

Name the shift:

           f(x) => f(x+5) + 2

5 units LEFT and 2 units UP