Conversion
Laws of Logarithms 1
Laws of Logarithms 2
Exponential Equations
Radians
100

Convert to logarithmic form 

4x = 17 

Log4(17) = x 

100

Combine into a single logarithm 

log(4) + log(5)

log(20) 

100

Combine into a single logarithm 

log2(10) + log2(9) - log2(15) 

log2(6) 

100

Find the value of x. Round your answer to two decimal places. 


4x = 215

The value of x is about 3.87 

100

Convert 45 degrees to radians. 

pi/4

200

Convert to exponential form 

log3(x) = 31

331 = x

200

Combine into a single logarithm

log(12) - log(3) 

log(4) 

200

Combine into a single logarithm 

log(8) / log(9)

log9(8)

200

Find the value of x. Round your answer to two decimal places

62x = 18

The value of x is about 0.81

200

Convert into degrees

8pi 

1440 degrees

300

Convert to logarithmic form. Make sure your answer in simplest form 

10x = 30,000

log(30,000) = x 

NOT

log10(30,000) = x

300

Simplify 

2log4(3)

log4(9)

300

Convert into a single logarithm 

log3/log4 + log5/log4

log415

300

Find the value of x. Round your answer to two decimal places. 

3x + 5 = 23x


The value of x is about 5.6 

300

Convert into degrees

pi/15

12 Degrees 

400

Convert to logarithmic form 

e12 = x

ln(x) = 12 

400
Simplify completely 


3log216(6)

1

400

convert into a single logarithm 

(log(3) + log(15) - log(9))/(log(4) + log(2) 

log8(5)

400

Solve the equation

22x + 1 = 33x

Round your answer to two decimal places. 

The value of x is about 0.36

400

Convert 105 degrees into radians. Do not round. 

(7pi)/12

500

Convert to logarithmic form. Write your answer is simplest form. 

102x = y 

log100y = x

500

Simplify completely 

log3(2x - 5y) 

when x = 3 and y = 1

0

500

Convert into a single logarithm

(ln(14) + 3ln(2) - ln(4))/(ln(36) - 2ln(3))

log428

500

Solve the equation 

63x - 2 = 82x + 1

Round your answer to two decimal places. 

The value of x is about 4.66

500

Convert 750 degrees into radians. Do not round. 

(25pi)/6