Simplifying radicals numbers
Simplifying radical expressions
Adding Radicals
Multiplying radicals
Combination (adding and multiplying radicals)
100

Simplify √45

3√5

100

Simplify √125

5√5

100

Simplify √2+3√2

4√2

100

Simplify √(6 ) * √(6 )

6

100

Simplify 2 √5 * (√6 + 2)

2 √30 + 4 √5

200
Simplify √75
5√3
200

Simplify √512

16√2

200
Simplify √125+√5
6√5
200

Simplify -4 √15 * - √3

12√3

200

Simplify √3 * (√6 + √10)

3√2 + √30

300

Simplify 2√12

4√3

300

Simplify √147

7 √3

300
Simplify √18+√2
4√2
300

Simplify -3 √7 ⋅ 6√7

-126

300

Simplify (√5 + √8) (√45 + √8)

23 + 8√10

400
Simplify √384
8√6
400

Simplify -3√24

-6√6

400

Simplify 6√7 + √2 + √7

√2 + 7√7

400

Find the area of rectangle with length = √24 and width = √8

8√3

400

Simplify √6(4√12 + 5√8)

24√2 + 20√3

500

Simplify -7√96

-28√6

500

Simplify 3√16x^4y^4 z

12x^2 y^2√z

500

Simplify 2√64 + 8√100

96

500

If P is power (in watts) and R is resistance (in ohms), then the voltage V necessary to run the circuit is V= √PR Find the voltage necessary to run a 40–watt amplifier with a resistance of 150 ohms.

20√15

500

Simplify (3√20 + 4√25)(4√5 - 3√4)

28√5