Add/ Subtract Rationals
x /(8 x + 48) ÷ (x^2+ 11 x + 18)/ (x^2 + 8 x + 12)
x/(8(x+9)
(x^2-1)/(x^2+x)
(x-1)/x
1 + (2 x)/ (x + 4 )= − 8 /(x + 4)
No Solution
Find the horizontal asymptote
f(x)= ((x−7)(x−6))/(3(x+9)(x−6))
y=1/3
Which values of x are undefined
(x^2-1)/(x^2+15x+54)
x=-6 x=-9
Express in reduced form
(−4x−6)/(2x^3) + ( 8x−1)/ (2x^3)
(4x-7)/(2x^3)
(x^2-49)/(6x+42)
(x-7)/6
x+7/(x-6)=2x
x=-1 & x=7
Find the horizontal asymptote
f(x)=(x^2-11x+24)/(2x^2-16x)
y=1/2
Find all x intercepts
f(x)= (3x+2)/ (x−5 )
(-2/3,0)
(x^2 -36)/ (x^2-5 x -6) ⋅ (3 x + 3 )/(9x^2)
(x+6)/(3x^2)
(x^2 +7x+12 )/(x^2 −9x)
(x+4)/(x+3)
x+x/(x-2)=2/(x-2)
Reject x=2
x=-1
Find the vertical asymptote
f(x)=(3x^2 −30x+27 )/(x^2-13x+36)
x=4
find the y intercepts
f(x)=(4x−2)/( 2x^2 −15x+7)
y=(0,-2/7)
5/x-6/(7x)
29/(7x
(2x^2+18x)/(x^2+9)
2
x-(3x)/(x+7)=5/(x+7
x=1 x=5
find the horizontal asymptote
f(x)=(15x-6)/(x^2+4x-45)
y=0
Find the x intercepts
f(x)=(x−7)/(2x^2 −20x+42)
no x-intercepts
(x^2 −81)/(x^2 −x−72) ÷ (x−2)/(x+8)
( x + 9 ) /(x−2)
(24x^2-72x)/(8x)
3(x-3)
9 − x /(x + 3) = − 5 /(x + 3 )
x=-4
f(x)=(3x^2+6x-189)/(x^2-17x+70)
Find the vertical asymptote
x=10
Find the hole
f(x)=(x^2-10x+24)/(2x^2-12x)
(6,1/6)