Find the derivative of f(x) = 3x^2 + 2x - 1.
f'(x) = 6x + 2
Simplify the expression 4m+5+2m−1.4m+5+2m−1.4m+5+2m−1.
6m+4
What is the midpoint of the line segment with endpoints (2, 4) and (6, 10)?
(4.7)
Two coins are tossed 500 times, and we get:
Two heads: 105 times
One head: 275 times
No head: 120 times
Find the probability of each event to occur.
One head 55%
No head 24%
(83)2+3(0.025)
53/320
100,000 pennies
1,000 dollars
69+48
117
Find the derivative of h(x) = (x^2 + 1)^3.
h'(x) = 6x(x^2 + 1)^2
Tom is painting a fence 100 feet long. He starts at the West end of the fence and paints at a rate of 5 feet per hour. After 2 hours, Huck joins Tom and begins painting from the East end of the fence at a rate of 8 feet per hour. After 2 hours of the two boys painting at the same time, Tom leaves Huck to finish the job by himself.
6 hours
midpoint of the line segment joining the points (1, -2) and (-5, 4)?
(2,1)
One card is drawn from a deck of 52 cards, well-shuffled. Calculate the probability that the card will
(i) be an ace,
(ii) not be an ace.
(i) 4/52 = 1/13
(ii) 48/52 = 12/13
Write the product of 2/3x 2/3 x 2/3 x 2/3 using the exponential form.
(2/3)^4
What is 95
59049
What is exponential growth?
Growth whose rate becomes ever more rapid in proportion to the growing total number or size.
Find the slope of the tangent line to the curve y = x^3 - 2x at x = 1.
Slope = 1
Simplify the fraction to the lowest terms:
924
------ OR 924/1092
1092
11/13
One-half of the measure of the supplement of angle ABC is equal to the twice the measure of angle ABC. What is the measure, in degrees, of the complement of angle ABC?
54
Two players, Sangeet and Rashmi, play a tennis match. The probability of Sangeet winning the match is 0.62. What is the probability that Rashmi will win the match?
The probability of Sangeet to win = P(S) = 0.62
The probability of Rashmi to win = P(R) = 1 – P(S)
= 1 – 0.62 = 0.38
−7x+2+3x−5
−4x−3
find the square root of 10
√10 = 3.1623
Y=mx+b
Evaluate the integral of ∫ (x^2 + 2) dx.
∫ (x^2 + 2) dx = (1/3)x^3 + 2x + C
(x-1)2 = [4√(x-4)]2
x = 13 and x = 5.
In rectangle ABCD, both diagonals are drawn and intersect at point E.
Let the measure of angle AEB equal x degrees.
Let the measure of angle BEC equal y degrees.
Let the measure of angle CED equal z degrees.
Find the measure of angle AED in terms of x, y, and/or z.
180 – 1/2(x + z)
If P(A) = 7/13, P(B) = 9/13 and P(A∩B) = 4/13, evaluate P(A|B).
Solution: P(A|B) = P(A∩B)/P(B) = (4/13)/(9/13) = 4/9.
3(2x+6−5x+3)
−9x+27
What is 16% of 79
12.24
What is the definitions of parallel?
Parallel lines are lines that never intersect.
Find the partial derivative of f(x, y) = x^2y + y^3 with respect to x.
∂f/∂x = 2xy
If 3x−y=12, what is the value of 8^x/2^y?
8^x/2^y
A student creates a challenge for his friend. He first draws a square, the adds the line for each of the 2 diagonals. Finally, he asks his friend to draw the circle that has the most intersections possible.
How many intersections will this circle have?
12
Consider the experiment of rolling a die. Let A be the event ‘getting a prime number’, B be the event ‘getting an odd number’. Write the sets representing the events
(i) Aor B
(ii) A and B
(iii) A but not B
(iv) ‘not A’.
(i) A or B = A ∪ B = {1, 2, 3, 5}
(ii) A and B = A ∩ B = {3,5}
(iii) A but not B = A – B = {2}
(iv) not A = A′ = {1,4,6}
Suppose three days ago was Tuesday. What day of the week will it be 90 days from today?
thursday
14,397x65
935,805
732461+36429
768,890