Exploring Scientific Notation
Scientific to standard
Standard to Scientific
Adding and subtracting scientific notation
Multiplying and Dividing Scientific notation
100

True Or False: The first number in a scientific notation problem is between 1 and 10 and may not go ANY higher.

True

100

Write 1.4 x 102 in standard notation.

140

100
200,000,000,000,000,000,000
What is 2.0 x 10 to the 20th?
100

What is the correct simplified form of (8.6 x 105) + (6.8 x 107)

6.886 x 107

100

(3x106) x (4x104)

1.2 x 1011

200

True Or False: The exponent of a number or variable must be 1-5 ONLY.

False

200

5.55 x 108 = _______________

555,000,000

200

3,000,000

What is 3x106

200

Solve (1x106)+(1x105)

 1.1 x 106

200

(9x1020) x (8x1010)

7.2 x 1031

300

Scientific notation problems must contain what in the second number position.

10 and an exponent

300

9.87654321 x 108= _____________

987,654,321

300

.0002343105937

2.343105937 x 10-4

300

(5.38 x 102) + (1 x 102)

6.38x102

300

(9x1010)/(6x108)

1.5 x 102

400

Is 26.786 x 1034 in scientific notation?

No

400

1.0 x 1011

What is 100,000,000,000?

400

What is 9,000,000,000 in Scientific Notation?

9.0 x 109

400

(0 x 100) + (10x1010)

10 x 1010

400

(3.25 * 10^6)/(10 * 10^20)

3.25 x 10-15

500

0.0000523 is an example of this form.

Standard Notation

500

2.25 x 104

What is 22,500?

500

The number 3,000,500,932 is approximately __________ in scientific notation?

3 x 109

500

(1x109) + (3.14x1010)


3.24x1010

500

(9x103)*(6x102)

5.4 x 106