Arithmetic, Geometric, or Neither?
What's the Sequence?
What's the Equation?
Find the Term!
Vocabulary
100

{3, 6, 9, 12, 15...}

Arithmetic

100

a(1)=8

a(n)=a(n-1)+2

{8, 10, 12, 14, 16...}

100

{7, 10, 13, 16...}

a(1) = 7

a(n) = a(n-1) + 3

100

If a(n) = 4(n-1) + 7, find a(10)

a(10) = 43

100

In an arithmetic sequence, the number being added every time. Uses the variable d.

Common Difference

200

{2, 4, 8, 16...}

Geometric

200

b(1)=4

b(n)=b(n-1) * 2

{4, 8, 16, 32, 64...}

200

{-15, -10, -5, 0, 5...}

a(1) = -15

a(n) = a(n-1) + 5

200

If a(n) = -9(n-1) - 1, find a(15)

-127

200

A number pattern that follows are rule, and goes on forever

Sequence

300

{19.5, 16, 12.5, 9...}

Arithmetic

300

c(1)=3

c(n)=c(n-1)* 5

{3, 15, 75, 375, 1875}

300

{4, 12, 36, 108, 324...}

a(1) = 4

a(n) = a(n-1) * 3

300

If a(n) = 4(n-1) * 2, find a(5)

512

300

In a geometric sequence, the number being multiplied every time. Uses the variable r

Common Ratio

400

{0, 1, 4, 9, 16...}

Neither

400

d(1)= 400

d(n)=d(n-1) * 1/4

{400, 100, 25, 6.25, 1.5625...}

400

{100, 50, 25, 12.5...}

a(1) = 100

a(n) = a(n-1) * 1/2

400

If a(n) = 0.75(n-1) * 84, find a(6)

19.93

400

The starting number in a sequence is called the first ______________. 

Term

500

{10, 5, 0.5, 0.25...}

Neither

500

e(1)= 5

e(n)=6 + e(n-1)

{5, 11, 17, 23, 29...}

500

{6, -24, 96, -384...}

a(1) = 6

a(n) = a(n-1) * -4

500

If a(n) = 1.5(n-1) * 3, find a(7)

34.17

500

When this is graphed, it makes a straight line

Arithmetic Sequence