Find the missing Side
Are the triangles Similar?
(Use a proportion)
Vocabulary
Proofs
100

In the diagram, ABC ~ A'B'C'. Find the value of AC.

AC = 32

100

Are the following triangles similar? Justify your answer.


The corresponding side lengths are not in proportion. Therefore, the triangles are Not Similar.

100

_____________ means to have the same shape.

Similarity 

100

Given:

AD and BC intersect at E

AB|| CD

Prove: ∆ABE ~ ∆DCE

Statement                       Reason

1)AD and BC intersect       1) Given

at E

AB|| CD


2) <C ≅ <B                          2) Alternate  Interior

and <A ≅ <D                            <'s are ≅ 


3) <AEB ≅ <CED             3) Vertical <'s are ≅ 


4) ∆ABE ~ ∆DCE              4) AA(A)

200

If the sides of one triangle are 6, 8, 10 and the longest side of a similar triangle is 20. What is the length of the shortest side?

The shortest side is 12

200

Examine the figure below. Determine if the two triangles are similar. Justify your answer.

The triangles are not in similar since the corresponding sides of the triangles are not in proportion.
200

__________ means to have the same shape and size.

Congruent

200

Given: 

AE and NL intersect at G

AN || LE

Prove: ∆AGN ≅ ∆LGE

Statement                         Reasons

1)AE and NL intersect at    1)Given

G and AN || LE

2) <L ≅ <N                     2) Alternate

and <E ≅ <A                      interior <'s are ≅

3) <AGN ≅ EGL               3) Vertical <'s are ≅

4)∆AGN ≅ ∆LGE              4) AA(A) 

                              

300

In the diagram, ∆ABC~∆EFG

<C = 120 degrees, <F = 15 degrees, AB=20, EF=10 and AC =8

a)Determine m<E.

b) Use a proportion to find the length of EG.

a) <E = 45 degrees

b) EG = 4

300

Find the missing side of these two similar triangles. 

x = 25

300

AA(A): Two triangles are (1)__________ if two angles of one triangle are (2)____________ to two corresponding angles of the other triangle.

(1) Similar

(2) Equal

300

Given: ABDE is a trapezoid 

 AB || ED

Prove: ∆AFB~ ∆DFE

Statement                   Reason

1)  AB|| ED                 1) Given

2) <E ≅ <B                 2) Alt. Interior <'s are ≅ 

3) <D ≅ <A                  3)Alt. Interior <'s are ≅

4)<EFD ≅ <AFB            4) Vertical <'s are ≅

5)∆AFB~ ∆DFE             5) AA(A)

400

A flagpole cast a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest 10th of a meter.( Draw your picture first to help you)

The flagpole 6.6 is meters tall. 

400

Triangles RST and XYZ are drawn below. IF RS=6, ST=14, XY=9, YZ=21, and <S ≅ <Y. is ∆RST similar to ∆XYZ? Justify your answer. 

Yes, ∆RST is similar to ∆XYZ since the corresponding sides are in proportion. 

400

SAS: Two triangles are (1)_________ if two pairs of corresponding sides are in (2)___________ and the angles between them are (3)_________.

(1) Similar

(2) Proportion

(3) Equal

400

Given: ABCD is a parallelogram and AFC is the diagonal. 

Prove ∆AFG ~∆EFC


Statement                           Reason

1) DFB is the diagonal          1) Given

2) EC || AG                         2) ABCD is a    

                                           Parallelogram so the

                                                    opposite sides

                                                       are parallel.                                     

3) < A ≅ <C                        3) Alt. interior <'s

and <G ≅ <E                          are ≅ 


4) <CFE ≅ <AFG                 4) Vertical <'s are ≅ 


5)    ∆AFG ~∆EFC                5)AA(A)

500

A summer camp counselor wants to find a length, x, in ft. across a lake represented in the picture below. The lengths represented by AB, EB, BD, and CD on the sketch were determined to be 1800 ft, 1400 ft, 700 ft, and 800 ft respectively. Segments AC and DE intersect at B, and <AEB and <CDB have the same measure. Use a proportion to determine the value of x. 

x = 1600 ft

500

In the diagram below ΔABC~ ΔDEC. If AC = 12, DC =7, DE =5, and the perimeter of ΔABC is 30. What is the perimeter of ΔDEC?


The perimeter is 17.5

500
SSS: When two triangles are (1)________ if all 3 sets of corresponding (2) _________ are in (3)___________.

(1)Similar

(2) sides

(3) Proportion

500

Given: GI || NT

IN intersects GT at A

Prove: ∆GIA ~ ∆TNA

Statements                         Reasons

1.) GI || NT                     1) Given

IN intersects GT at A    


2.)<I ≅  <N                      2) Alt. Int. <'s are ≅ 

3.) <G ≅ <T                      3) Alt. Int <'s are ≅ 

4.) <IAG ≅  <TAN              4) Vertical <'s are ≅ 

5.)  ∆GIA ~ ∆TNA              5) AA(A)