Law of Exponents
Factoring
Graphing Inequalities
100

Question #3

(2x^-3 y^5)^2 x^4 y^-1 / 4xy^2

y^7/x^3

100

Question #4

6x^2 − 7x − 56

(2x+1)(3x−5)

100

Question #1 (Daily QUADRUPLE, 4X POINTS)

Graph the inequality:  y−2 ≥ −3x+4 

Sample Answer Key:

Step 1: Solve for y:

y≥−3x+6

Step 2: Graph the line y = -3x + 6

  • Slope = -3, y-intercept = 6

  • Use a solid line because the inequality is ≥

Step 3: Shade the area above the line (since y is greater than or equal to).

✅ Graph components:

  • Solid line for boundary

  • Slope: down 3, right 1

  • Y-intercept at (0, 6)

  • Shade above the line

200

Question #5

(3p^-1 q^2)^3 / (p^2 q^-4)^2

27q^14/p^7

200

Question #1

12x^2−17x+6

(3x - 2)(4x - 3)

200

Question #3

Graph 3x − y ≤ 7

−y ≤ 7−3x

⇒ y ≥ 3x−7 (flip sign). 

Boundary: solid y=3x−7; shade above.

300

Question #1 (Daily TRIPLE)

(-2x^3y^-2)^2 / 4x^4y

x^2/y^5

300

Question #5 (Daily Double)

10x^2 − 11x − 6

 (5x+2)(2x−3)

300

Question #5

Graph 4x + 2y < 8

2y < −4x+8

⇒ y < -2x+4

Boundary: dashed y=−2x+4; shade below.

400

Question #2

(-3a^4 b^-2)^3 / 9a^6b^3

-3a^6/b^9

400

Question #3

15x^2 + 2x − 8

(3x−2)(5x+4)

400

Question #2

Graph 2y−3 > x+5

2y > x+8

⇒y>1/2x+4

Boundary: dashed y=1/2x+4, shade above.

500

Question #4

(-5m^2 n^-3)^-2 m^3 n / 25

n^7/625m

500

Question #2

2x^2−18x+40

2(x−5)(x−4)

500

Question #4

Graph y + 2 ≥ −2x − 1

y≥−2x−3

Boundary: solid y=−2x−3; shade above.