Surprise
1 Sample Tests of Significance
1 Sample Confidence Interval
Random Package
Chi Square Test
100
When working with means what 2 sample test for mean do you use?
A t test
100
What does the 1 Sample Test of Significance do?
Compares the difference of a sample statistic from one sample with the mean parameter of a population
100
For a one sample confidence interval the middle value of any interval is equal to what?
The sample statistic
100
2 With the regression equation score=34+2(hoursstudy), What is the meaning of the y-intercept?
The model predicts an increase of 2 points on the score for each hour of study time.
100
What is the formula for a Chi Square Test?
(Observed - Expected)^2 / Expected
200
The confidence interval for a proportion is (0.4958, 0.7423). What level of confidence was used if n=42?
90%
200
What are the requirements for a t-test?
Data must be normally distributed population & σ is unknown
200
What is the formula for a 1 sample confidence interval?
p-hat plus or minus z * square root of (p-hat x 1-p-hat/n)
200
The average heights of a random sample of 400 people from a city is 1.75 m. It is known that the heights of the population are random variables that follow a normal distribution with a variance of 0.16 m. With a confidence level of 90%, what would the minimum sample size need to be in order for the true mean of the heights to be less than 2 cm from the sample mean?
The sample must be at least 1,083 people.
200
What is the formula for degrees of freedom for a Goodness of Fit test?
(Number of categories) - 1
300
What should the graph of the residuals look like if a linear regression is appropriate?
Random
300
A professor wants to know if her introductory statistics class has a good grasp of basic math. Six students are chosen at random from the class and given a math proficiency test. The professor wants the class to be able to score at least 70 on the test. The six students get scores of 62, 92, 75, 68, 83, and 95. Can the professor be at least 90 percent certain that the mean score for the class on the test would be at least 70? Is this a one tailed test? Write the hypothesis and alternative hypothesis.
It is one tailed H0: μ < 70 H a: μ ≥ 70
300
What is standard error?
The standard error is the estimated standard deviation of a statistic
300
The average heights of a random sample of 400 people from a city is 1.75 m. It is known that the heights of the population are random variables that follow a normal distribution with a variance of 0.16 m. Determine the interval of 95% confidence for the average heights of the population.
n = 400 x = 1.75 σ = 0.4 1 − α = 0.95 zα/2 = 1.96 (1.75 ± 1.96 · 0.4/20 ) → (1.7108,1.7892)
300
What is the purpose of a Chi Square Test?
The purpose is to see whether observed experimental data is a 'good fit' with theoretical expected results.
400
A scatter plot has a strong negative linear association, with an R-squared value of 0.926. What is the correlation coefficient?
r = -0.962
400
A herd of 1,500 steers was fed a special high-protein grain for a month. A random sample of 29 were weighed and had gained an average of 6.7 pounds. If the standard deviation of weight gain for the entire herd is 7.1, what is the likelihood that the average weight gain per steer for the month was at least 5 pounds? Is this a one tailed test or two tailed? Write the Hypothesis and Alternative Hypothesis
One Tailed H0:μ < 5 H0:μ ≥ 5
400
Which of the following statements is true. I. The standard error is computed solely from sample attributes. II. The standard deviation is computed solely from sample attributes. III. The standard error is a measure of central tendency. (A) I only (B) II only (C) III only (D) All of the above. (E) None of the above.
The correct answer is (A)
400
What happens to the width of the intervals when you increase your sample size?
The intervals become narrower
400
The p-value of a chi-square test is (0.0003). Write a conclusion using this p-value at the .05 significance level.
Since the P-value (0.0003) is less than the significance level (0.05), we cannot accept the null hypothesis. Thus, we conclude that there is a relationship between gender and voting preference.
500
An experiment is conducted to determine whether intensive tutoring (covering a great deal of material in a fixed amount of time) is more effective than paced tutoring (covering less material in the same amount of time). Two randomly chosen groups are tutored separately and then administered proficiency tests. Is this one tailed or two tailed? Write the Hypothesis and Alternative
One Tailed H0: μ1 ≤ μ2 or H0: μ1 − μ2 ≤ 0 Ha: μ1 ≥ μ2 or: Ha: μ1 − μ2 ≥ 0
500
A Little League baseball coach wants to know if his team is representative of other teams in scoring runs. Nationally, the average number of runs scored by a Little League team in a game is 5.7. He chooses five games at random in which his team scored 5 9, 4, 11, and 8 runs. Is it likely that his team's scores could have come from the national distribution? Assume an alpha level of .05. Is this one tailed or two tailed? Write the Hypothesis and Alternative Hypothesis
Two Tailed H0: μ = 5.7 Ha: μ ≠ 5.7
500
Suppose we want to estimate the average weight of an adult male in Dekalb County, Georgia. We draw a random sample of 1,000 men from a population of 1,000,000 men and weigh them. We find that the average man in our sample weighs 180 pounds, and the standard deviation of the sample is 30 pounds. What is the 95% confidence interval. (A) 180 + 1.86 (B) 180 + 3.0 (C) 180 + 5.88 (D) 180 + 30 (E) None of the above
The correct answer is (A)
500
Suppose that you want to find out the average weight of all players on the football team at Landers College. You are able to select ten players at random and weigh them. The mean weight of the sample of players is 198. The standard deviation is s = 11.50. What is the margin of error for a 90 percent confidence interval.
6.6663
500
With a sample size of 400, and an expected distribution of Red at 25%, Yellow at 15%, Blue at 20%, and Green at 40%, what is the expected count for Blue?
80