What's a good first step?
Get everything in terms of sin and cos
Math Joke!
What do you call a tree made up of numbers?
A Geome-tree
OR
A Trigonome-tree
What do you call a man that spent all summer at the beach?
A tan-gent
How is finding the general rule different from finding the zeros? What do you do differently?
It accounts for all possible rotations.
"Zeros "+2pir
What is a swimmer's favorite type of math?
Dive-vision!
sin(x)csc(x)-cos^2(x)=sin^2(x)
1-cos^2(x)
= sin^2(x)
sin(x)=1/2
cos(x)=sqrt(3)/2
csc(x)=2
sec(x)=(2sqrt(3))/3
tan(x)=sqrt3/3
cot(x)=sqrt(3)
2cosx-1=0
pi/3" and "(5pi)/3
2sinx-1=0
pi/6+2npi
(5pi)/6+2npi
sin(105^o)
sin(45+60)
(sqrt2+sqrt6)/4
sec(x)(1-sin^2(x))=cos(x)
sec(x)(cos^2(x)) = 1/cos(x)*cos^2(x) = cos(x)
csc(x)=25/7
tan(x)=7/24
sin(x)=7/25
cos(x)=24/25
sec(x)=25/24
cot(x)= 24/7
cscx-2=0
pi/6 " and " (5pi)/6
secx-2=0
pi/3+2npi
(5pi)/3+2npi
cos(15^o)
cos(45-30)
(sqrt6+sqrt2)/4
cos(x)/(1-sin^2(x))=sec(x)
cos(x)/cos^2(x)
=1/cos(x)
=sec(x)
sin(x)=-3/5
tan(x)<0
cos(x)=4/5
csc(x)=-5/3
sec(x)=5/4
tan(x)=-3/4
cot(x)=-4/3
cos(x)*sin(x)=0
0" or "2pi, pi/2 , pi, (3pi)/2
(2cosx+1)=0
(2pi)/3+2npi
(4pi)/3+2npi
sin(195^o)
sin(225-30)
(-sqrt6+sqrt2)/4
cos(x)(cos(x)+sec(x)sin^2(x))=1
cos^2(x)+cos(x)sec(x)sin^2(x)
= cos^2(x)+sin^2(x)
= 1
cos(x)=8/17
sin(x)<0
sec(x)=17/8
sin(x)=-15/17
csc(x)=-17/15
tan(x)=-15/8
cot(x)=-8/15
(cosx-1)(2sinx-1)=0
0 or 2pi, pi/6,(5pi)/6
(cos(x)-1)*(sin(x)+1)=0
0 or 2pi +2npi
(3pi)/2+2npi
sin((11pi)/12)
=sin(165)
=sin(120+45)
(sqrt6-sqrt2)/4
cot(x)(-1+sec^2(x))(cos(x))=sin(x)
cot(x)(tan^2(x))(cos(x))
=tan(x)cos(x)
=sin(x)/cos(x)*cos(x)
=sin(x)
sec(x)=4
sin(x)>0
cos(x)=1/4
sin(x)=sqrt15/4
csc(x)=4sqrt15/15
tan(x)=sqrt15
cot(x)=sqrt15/15
sin(x)+cos(x)sin(x)=0
0 or 2 pi, pi
cos(x)+cos(x)sin(x)=0
pi/2+2npi
(3pi)/2+2npi
cos((7pi)/12)
=cos(105)
=cos(45+60)
(sqrt2-sqrt6)/4