Solve the inequalities #1
sinx> 1\2
(Π \6+2Π K;5Π \6+2Π K)
tgx=sqrt3
pi\3+pik k=z
arcsin1
90
cosx>1\2
(-Π\3+2Πk; Π\3+2Πk)
sinx=1
piK k=z
sinx≤ sqart2\2
[-5Π\4+2ΠK; Π\4+2ΠK]
4sinx-4=0
pi\2+2pik k=z
arcctg0
90
cosx≤ sqart2\2
[Π\4+2Πk;7Π\4+2Πk]
tgx=1
pi/4+piK k=z
sinx≥ 0
[2ΠK; Π +2ΠK]
sin2x-cosx=0
pi\2+pik k=z
cos(arctg(-1))
sqrt2/2
tan2x>sqart3
(Π\6+Πk\2; Π\4+Πk\2)
tgx=0
pik k=z
tanx<-1
(-Π\2+ΠK; -Π\4+ΠK)
cos2xcosx-sin2xsinx=0
pi\6+pik\3 k=z
arcsin(-1\2)
-pi\6
cos(x+Π\3)>1\2
(-2Π\3+2Πk; 2Πk)
ctgx=sqrt3
pi/6+pik k=z
sin2x<0
(-Π\2+Πk; Πk)
2cos2x=3sinx
(-1)2pi\6+pik k=z
arccos(sin30)
pi\3 or 60
cos2x-sinx-1≥ 0
[Π+2Πk; 2Πk]
sinx=-1/2
(-1)k+1pi/6+pik k=z