Identities
csc x=
1 / (sin x)
(sec x)(cos x)=
1
sin²x + cos²x=
1
Solutions for 0 to 360 degrees for sin x = √3 / 2
60 and 120 degrees
(sin x) / (cos x)=
tan x?
(tan x)(cos x)=
sin x
1 + cot²x=
csc²x
Solutions of 0 to 360 for 2cosx +4=0
60 and 300 degrees
1 / (sec x)=
cos x?
(sec x) / (tan x)=
csc x
1 - cos²x=
sin²x
All solutions 0 to 360 degrees for 2sinx - 1 = 0
30 and 150 degrees
(cos x) / (sin x)=
cot x?
sin x (csc x - sec x)=
1 - tan x?
sec²x - 1=
tan²x
All solutions 0 to 360 for sin2x-2cosx-2=0 (Hint: Look at Trig Identities)
180 degrees
cos (-x)=
cos x
csc x - sin x=
(cos²x) / (sin x) OR (cos x)(cot x) ?
(1 + csc x)(1 - csc x)=
-cot²x
All solutions from 0 to 360 degrees for 5cosx- √3 = 3cosx
30 and 330 degrees