Inverse Trigonometric Functions
The degree measure of θ if θ=arcsin(-√2/2)
-45 degrees
The solutions of 2tan(x)= 3sin(x) in the interval [0°,360°) using a calculator to the nearest tenth of a degree
x= 48.2°, 180°, 311.8°, 0°
The double angle identity of sin
sin(2x)=2sin(x)cos(x)
The value of the variable x in the equation: 4y=sinx
(solve for x)
arcsin(4y)=x
The range and domain of y=arcsinx
range:[-1,1]
domain: [-𝛑/2,𝛑/2]
The degree measure of θ if θ=arcsec(-2)
θ=120 degrees
The solution of the trigonometric equation:
2sin2x - sinx-1 = 0 by factoring in the interval [0, 2𝛑)
X= 7𝛑/6 , 11𝛑/6 , 𝛑/2
The exact solution in the interval [0°, 360°) of the equation: sin x/2 =1
X=180°
Solve arccos(y-𝝅/3)= 𝝅/6
((3√3)+(2𝝅)) / 6
The quadrant(s) of the unit circle from which range values come for y=arccsc(x)
Quadrants I and IV
The function value of sin(arccos 1/4)
√15 / 4
The solutions of the equation in the interval [0°, 360°) by squaring : sin2 (x)cos2 (x)=0
X= 0°, 90°, 180°, 270°
The exact solutions in the interval [0°, 360°) of the equation: cos 2x = -1/2
x= 60°,120°,240°,300°
The value of the variable x in the equation :
arcsin x = arctan(4/3)
x=4/5
The range and domain of y=arccos(x)
range: [0,𝛑]
domain: [-1,1]
The function value tan(arccos u) as a non-trigonometric expression in u
√(1-U2) / U
Find the approximate solutions to the nearest hundredth by factoring in the interval [0,2𝝅) :
tan2 x-4=0
x= 2.03, 5.17,1.12, 4.25
The exact solutions in the interval [0°, 360°) of the equation: sinxcosx=1/4
x=15°,75°,195°, 225°
Find the value of x using an identity in the equation: arcsinx+arctan√3=2𝝅/3
x=√3/2
The domain and range of y=arcsec(x)
Domain : (-∞,-1]U[1,∞)
Range: [0, 𝛑/2)U(𝛑/2,𝛑]
The function value of cos(2arctan 4/3) using the double angle identity
-7/25
The exact solution in the interval [0°, 360°) using the quadratic formula :
4cos2X + 4cosX =1
281.95°
The exact solutions in the interval [0°, 360°) of the equation: sin2x=2cos2x
x=90°,270°,45°,225°
Find the value of x in the equation :
arcsinx + arctanx=0
x=0
The quadrants of the unit circle from which range values come for y=arccot(x)
Quadrants I and II