Line Segments
Distance
Locating Points on a Coordinate Plane
Midpoints and Bisectors
Points, Lines, and Planes
100

35+x=90

55

100

2x-60=30

45

100

-8.75

-8 3/4

100

2.3+(-1.4)

0.9

100

3-7

-4

200

x-34=146

180

200

180+5x=360-4x

20

200

3 2/5

3.4

200

-40.5+3.07

-37.43

200

8 - (-2)

10

300

3x=180

60

300

(x+6)+3x+90

21

300

-7/2

-3.5

300

1/3+(-1/2)

-1/6

300

15 - (-18)

33

400

-x/3=17

-51

400

(3x+1)+(2x-6)=180

37

400

0.012

3/250

400

-3/4 + 3/8

-3/8

400

37-48

-11

500

(4+10/2, 1+5/2)

7, 3

500

(-3, -5) (-4,2)

7.07

500

17/20

0.85

500

(-4, +2/ 2, 5+(-3)/2)

(-1,1)

500

One plane that can be named is plane A. You can also use the
letters of any three noncollinear points to name this plane. Plane
TRS and plane TQS can be used to name this plane.

plane QST