Exponential Growth & Decay
Logarithms
Properties of Logs
Solving Logs
Mix
100

Determine whether the relation is a function and explain why


No, does not pass the Vertical Line Test

100

Identify the function family. 


Linear

100

Describe the transformation.

f(x) = x-3


Vertical shift 3 units down

100

Where the graph comes to a point is called the 

Vertex

100

A piecewise function is make up of distinct "______" depending on rules assigned for the _______.  

pieces, domain 

200

Is the set of ordered pairs a function? 

{(2,10)(3,10),(4,10),(5,10)} 



Yes

200

Identify the function family. 


Constant

200

Describe the transformation(s). 

f(x)= (x-7)2+13

Horizontal shift 7 units right

Vertical shift 13 units up

200

In vertex form, what does a, h, and k represent 

a = slope

h = moves graph L/R

k = moves graph Up/Down

200

What is the domain of f(x)= -2 


Domain: x ≥ -2 

300

State the domain and range. 


{(0,7),(0,8),(1,7),(1,8),(1,9),(2,10)}

Domain: {0,1,2}

Range: {7,8,9,10} 

300

Identify the family function. 


Absolute Value

300

Describe the transformation(s). 

f(x) = -5/3x 

Reflection over the x-axis 

Vertical stretch by a factor of 5/3

300

Write the absolute value function given the transformation

let f(x) = |x|

Vertical stretch by a factor of 4

g(x) = 4|x|

300

Evaluate f(-1)


-1

400

State the domain and range 


Domain: −1<x<1

Range: 0≤y<1 

400

Identify the family function. 


Quadratic

400

Describe the transformation(s). 

f(x)= 1/2 |x+2|

Vertical shrink by a factor of 1/2

Horizontal shift 2 units left 

400

Write the absolute value function given the transformation

let f(x) = |x|

Horizontal stretch by a factor of 5

g(x) = |1/5x|

400

Write a rule for the graphed piecewise function.


f(x) = {4, x≤-2

           -x, -2 < x < 2

           -3, x ≥ 2 

 

500

State the domain and range. 


Domain: {-5, -2, 2}

Range: {-4, 1, 3}

500

What are the maximums and minimums of a constant function? 

None 

500

Describe the transformation(s).

f(x) = -7x2 + 11

Reflection over the x axis

Vertical stretch by a factor of 7

Vertical shift 11 units up

500

Write the absolute value function given the transformation

let f(x) = |x|

Horizontal shrink by a factor of 1/9

g(x) = |9x|

500

Graph f(x) = { x, x>1

                     -2x+3, x ≤ 1