Using the definition of derivative formula, solve for v'(t):
V(t)=3−14t
v'(t) = -14
Solve for f'(x):
f(x) = x3(2x2 + 1)
f'(x) = 10x4 + 3x2
Solve for f'(x):
f(x)= 3tanx
f'(x) = 3secx^2
Solve for f'(x)
f(x) = x2ex
f'(x) = 2xex + x2ex
Using the definition of derivative formula, solve for q'(t):
Q(t)=10+5t−t2
q'(t) = 5 - 2t
Solve for g'(x):
g(x) = (x2 + 1) / (x2 - 1)
g'(x) = (-4x) / ((x2 - 1)2)
solve for f'(x):
f(x) = 14tanx(cosx) + 10cscx
f'(x) = 14cosx - 10cscxcotx
Solve for f'(x)
f(x) = (10x) / (ln 10)
f'(x) = 10x
Using the definition of derivative formula, solve for z'(t):
Z(t)=√(3t-4)
z'(t) = (3) / (2√(3t-4))
Solve for f'(x)
f(x) = [(x2 - 4)/(x - 1)] x [(x2 - 1)/(x + 2)] v
f'(x) = 2x - 1
solve for f'(x)
f(x) = (x5) / (4sinx)
f'(x) = (x4(5sinx - xcosx)) / (4sin2x)
Solve for f'(x)
f(x) = ln√(5x-7)
f'(x) = 5 / (2(5x - 7))
Using the definition of derivative formula, solve for f'(x)
f(x) = 10x3 + 36x2 - 8x +2
f'(x) = 2(15x2 + 36x - 4)
Solve for h'(x)
h(x) = (√(2x +5)) / (x - 3)
h'(x) = -(x + 8) / (√ (2x + 5) (x - 3)2)
solve for f'(x)
f(x) = 10cos3(4x)
f'(x) = -120cos2(4x)sin(4x)
solve for f'(x)
f(x) = ln ( (x2 + 1) / (x3 - x) )
f'(x) = ((2x) / (x2 + 1)) - ((3x2 - 1) / (x3 - x))