Using Definition of Derivative
Product/Quotient/Chain
Trig Functions
Natural Log and Exponential Functions
100

Using the definition of derivative formula, solve for v'(t):

V(t)=3−14t

v'(t) = -14

100

Solve for f'(x):

f(x) = x3(2x2 + 1)

f'(x) = 10x4 + 3x2

100

Solve for f'(x):

f(x)= 3tanx

f'(x) = 3secx^2

100

Solve for f'(x)

f(x) = x2ex

f'(x) = 2xex + x2ex

200

Using the definition of derivative formula, solve for q'(t):

Q(t)=10+5t−t2

q'(t) = 5 - 2t

200

Solve for g'(x):

g(x) = (x2 + 1) / (x2 - 1)

g'(x) = (-4x) / ((x2 - 1)2)

200

solve for f'(x):

f(x) = 14tanx(cosx) + 10cscx

f'(x) = 14cosx - 10cscxcotx

200

Solve for f'(x)

f(x) = (10x) / (ln 10)

f'(x) = 10x

300

 Using the definition of derivative formula, solve for z'(t):

Z(t)=√(3t-4)

z'(t) = (3) / (2√(3t-4))

300

Solve for f'(x)

f(x) = [(x2 - 4)/(x - 1)] x [(x2 - 1)/(x + 2)] v

f'(x) = 2x - 1

300

solve for f'(x)

f(x) = (x5) / (4sinx)

f'(x) = (x4(5sinx - xcosx)) / (4sin2x)

300

Solve for f'(x)

f(x) = ln√(5x-7)

f'(x) = 5 / (2(5x - 7))

400

 Using the definition of derivative formula, solve for f'(x)

f(x) = 10x3 + 36x2 - 8x +2

f'(x) = 2(15x2 + 36x - 4)

400

Solve for h'(x)

h(x) = (√(2x +5)) / (x - 3)

h'(x) = -(x + 8) / (√ (2x + 5) (x - 3)2)

400

solve for f'(x)

f(x) = 10cos3(4x)

f'(x) = -120cos2(4x)sin(4x)

400

solve for f'(x)

f(x) = ln ( (x2 + 1) / (x3 - x) )

f'(x) = ((2x) / (x2 + 1)) - ((3x2 - 1) / (x3 - x))