FOIL: (2x-1)(x-5)
2x2-11x+5
Factor: 27x3-64
(3x-4)(9x2+12x+16)
FOIL: (x+8)(x-8)
x2-64
What form is this?:
y=(x+3)(x-4)
Intercept form
What form is this?: y=2x2+97+11
Standard form
FOIL: (2x+3)(x2+8x-5)
2x3+19x2+14x-15
Factor: 8x4+x
x(2x+1)(4x2-2x+1)
Factor: x2-81
(x+9)(x-9)
Solve by factoring:
3x2+14x-49=0
x=-7, x=7/3
Transform the function so that the parabola opens downward: y=9(x+82)2+34
y=-9(x+82)2+34
Factor using box method:
x2-12x+32
(x-4)(x-8)
Simplify:
(2b+5)(4b2-10b+25)
8b3+125
Factor: 9x2-144
3(x+4)(x-4)
Solve by factoring: b2+15b=-56
x=-8, x=-7
Find x and y-intercept(s):
y=-(x-11)(x+14)
x-intercepts: (-14,0), (11,0)
y-intercept: (0,154)
Factor using box method: 3x2+18x-165
3(x+11)(x-5)
Simplify:
x(5x-2)(25x2+10x+4)
125x4-8x
Factor: x4-16
(x2+4)(x+2)(x-2)
True or false? All quadratic functions can be written in intercept form
False
Find axis of symmetry and vertex: y=-2x2+12x-16
AOS: x=3
Vertex: (3,-2)
Factor: 2p3+5p2+6p+15
(p2+3)(2p+5)
Fill in the blanks: (4x__)(__-12x+__) then simplify
(4x+3)(16x2-12x+9)
64x3+27
Factor: 3x8-768
3(x4+16)(x2+4)(x+2)(x-2)
Convert into vertex form: y=2(x-5)(x+7)
y=2(x+1)2-72
Find the vertex form given the following information: A parabola goes though the points (6,0), (4,0), and (9,-30)
y=-2(x-5)2+2