Factoring/Box Method
Sum & Difference of Cubes
Difference of Squares
Forms of Quadratic Equations I
Forms of Quadratic Equations II
200

FOIL: (2x-1)(x-5)

2x2-11x+5

200

Factor: 27x3-64

(3x-4)(9x2+12x+16)

200

FOIL: (x+8)(x-8)

x2-64

200

What form is this?: 

y=(x+3)(x-4)

Intercept form

200

What form is this?: y=2x2+97+11

Standard form

400

FOIL: (2x+3)(x2+8x-5)

2x3+19x2+14x-15

400

Factor: 8x4+x

x(2x+1)(4x2-2x+1)

400

Factor: x2-81

(x+9)(x-9) 

400

Solve by factoring: 

3x2+14x-49=0

x=-7, x=7/3

400

Transform the function so that the parabola opens downward: y=9(x+82)2+34

y=-9(x+82)2+34

600

Factor using box method: 

x2-12x+32

(x-4)(x-8) 

600

Simplify: 

(2b+5)(4b2-10b+25)

8b3+125

600

Factor: 9x2-144

3(x+4)(x-4)

600

Solve by factoring: b2+15b=-56

x=-8, x=-7

600

Find x and y-intercept(s): 

y=-(x-11)(x+14)

x-intercepts: (-14,0), (11,0)

y-intercept: (0,154)

800

Factor using box method: 3x2+18x-165

3(x+11)(x-5) 

800

Simplify: 

x(5x-2)(25x2+10x+4)

125x4-8x

800

Factor: x4-16

(x2+4)(x+2)(x-2)

800

True or false? All quadratic functions can be written in intercept form

False

800

Find axis of symmetry and vertex: y=-2x2+12x-16

AOS: x=3

Vertex: (3,-2)

1000

Factor: 2p3+5p2+6p+15

(p2+3)(2p+5) 

1000

Fill in the blanks: (4x__)(__-12x+__) then simplify

(4x+3)(16x2-12x+9)

64x3+27

1000

Factor: 3x8-768

3(x4+16)(x2+4)(x+2)(x-2)

1000

Convert into vertex form: y=2(x-5)(x+7)

y=2(x+1)2-72

1000

Find the vertex form given the following information: A parabola goes though the points (6,0), (4,0), and (9,-30)

y=-2(x-5)2+2