Factoring Quadratics
Dividing Polynomials
Synthetic Division
Imaginary Numbers
Rational Zero Theorem
100

3x2+33x+30

X=-1,-10

100

(x2-7x-11) / (x-8)

x-1-3/x-8

100

x3-3x2+x-3

x= 1,-1,3,-3

100

(-6-7i)+(2+6i)

-4-i

100

x3+3x2-6x-8

(-4,-1,2)

200

2x2-9x+10

x= 5/2, 2

200

(x2-x-29) / (x-6)

x+5+1/x-6

200

(x3+3x2-36x-108) / (x+3)

x= -6,6

200

(6i)+(6i)-(7-3i)

-7+15i

200

x3-x2-8x+12

(-3,2)

300

9x2+12x+4

x=-2/3

300

(2x2+7x-39) / (2x-7)

x+7+10/2x-7

300

(x3+4x2-15x-18) / (x-3)

x= -6,-1

300

(4-8i)+(-2-6i)

2-14i

300

x3+6x+20

(-2)

400

30x2-8x-6

x=3/5, -1/3

400

(-5x2+x3+8x+4) / (x-1)

x2-4x+4+8/k-1

400

(2x3+17x2+23x-42) / (2x+7)

x= -6, 1

400

(-3-8i)-(6i)-(3i)

-3-17i

400

2x3+3x2-4x-4

(-2)

500

10x2-640

x= 8, -8

500

(50x3+10x2-35x-7) / (5x-4)

10k2+10k+1-3/5k-4

500

(5x3-13x2+10x-8) / (x-2)

(3+i√71)/10, (3-i√71)/10

500

(-4-5i)-(4+6i)

-8-11i

500

x4-2x3-3

(-1)