g(x)=4sqrt(x-1)
Find
g^-1(x)
g^-1(x)=(1/4x)^2+1
g^-1(x)=1/16x^2+1
Evaluate
log_6 216
3
Rewrite in logarithm form:
7^x=35
log_7 35=x
Simplify:
(2e^x)^3
8e^(3x)
Describe the transformation (if any) and identify the domain, range, and asymptote:
y=e^x
No transformation
Domain: all real numbers
Range: y>0
H.A.: y=0
f(x)=9^(x-1)
Find
f^-1(x)
f^-1(x)=log_9x+1
Evaluate
log100
2
Rewrite in exponential form (Do not solve for x):
log_2(x+1)=8
2^8=x+1
Simplify:
6^(log_6 (3x)
3x
Describe the transformation (if any) and identify the domain, range, and asymptote:
f(x)=logx
No transformation
Domain: x>0
Range: all real numbers
V.A.: x=0
c(x)=log(x)
Find
c^-1(x)
c^-1(x)=10^x
Evaluate
ln1
0
Rewrite in exponential form (Do not solve for x):
ln(5x)=x+1
e^(x+1)=5x
Simplify:
e^ln40
40
Describe the transformation (if any) and identify the domain, range, and asymptote:
y=log_5(x-3)-2
Tranformation: Right 3 units, Down 2 units
Domain: x>3
Range: all real numbers
V.A.: x=3
h(x)=log_4(x-1)
Find
h^-1(x)
h^-1(x)=4^x+1
Evaluate
log_16(1/64)
-3/2
Rewrite in logarithm form (Do not solve for x):
e^(5x^2+1)=x+3
ln(x+3)=5x^2+1
Simplify:
log_2 2^8
8
Describe the transformation (if any) and identify the domain, range, and asymptote:
y=e^(x+1)-3
Transformation: Left 1 unit, Down 3 units
Domain: all real numbers
Range: y>-3
H.A.: y=-3
s(x)=1/2*10^(x-2)
Find
s^-1(x)
s^-1(x)=log(2x)+2
Evaluate
log_3 root5(243)
1
Rewrite in exponential form (Do not solve for x):
log_(x+1)5=2x-3
(x+1)^(2x-3)=5
Simplify:
3log_2 4
6
Describe the transformation (if any) and identify the domain, range, and asymptote:
y=-3log_2(x+1)+3
Transformation: left 1 unit, up 3 units, vertical stretch by factor of 3, reflection over x-axis
Domain: x>-1
Range: all real numbers
V.A.: x=-1