int 2xcos(x^2) dx
sin(x2)+C
∫ 1/(x^2−1) dx
1/2 ln|(x-1)/(x+1)|+C
∫ _1^4 x ^2 dx
21
Use geometry to find the area under f(x)=2 on the interval [0, 5].
Area=10
int xe^xdx
xe^x-e^x+C
∫1/[xln(x)]dx
ln∣ln(x)∣+C
∫(3x+1)/(x^2+3x)dx
1/3ln|x|+8/3ln|x+3|+C
F(x)=∫ _0^x cos(t)dt
Find F′(x).
F′(x)=cos(x)
Estimate the area under f(x)=x from x=0 to x=4 using a left Riemann sum with 2 rectangles.
Area=4
int xln(x)dx
x^2/2ln(x)-x^2/4+C
∫6x(x^2+5)^4dx
(x2+5)5+C
∫ (5x-1)/[ (x+2)(x−3)] dx
11/5 ln∣x+2∣+ 14/5 ln∣x−3∣+C
F(x)=∫ _1^(x^2) ln(t)dt
Find F′(x).
4xln(x)
Use a right Riemann sum with 3 rectangles to estimate the area under f(x)=x2 on [0, 3].
Area=14
int xcos(x)dx
xsin(x)+cos(x)+C
int_1^2 xsqrt(x^2+1) dx
1/3 (5sqrt5-2sqrt2)
∫ (2x+7)/[x ^2 +4x−5] dx
1/2 ln∣x+5∣+ 3/2 ln∣x−1∣+C
G(x)=∫_x^4 sqrt(1+t^3)dt
Find G′(x).
-sqrt(1+x^3)
Approximate the area under
f(x)=sqrtx
on [1,5] using a midpoint Riemann sum with 2 rectangles.
Area=6.828
int ln(x)dx
xln(x)-x+C
∫ x^2/(x^3+1)^2 dx
-1/[3(x^3+1)]+C
∫ [7x^2+17x+6]/[(x+1)(x+2)(x+3)] dx
2ln|x+1|-ln|x+2|+3ln|x+3|+C
F(x)=∫_(x^3)^(x^4) 1/(1+t^2) dt
(4x^3)/(1+x^8)-(3x^2)/(1+x^6)
f(x)=1/x
is decreasing on the interval [1,5].
Using Left Riemann sum with 4 rectangles, over or under estimate the area? Calculate the area.
Overestimate; Area=2.083
int x^2e^xdx
x^2e^x-2xe^x+2e^x+C