VERIFY: csc(θ)=(1/2)csc(θ)sec(θ)
csc(2θ)=(1/2)csc(θ)sec(θ)
> (1/sin(2θ))=(1/2)(1/sin(θ)cos(θ))
>> (1/sin(2θ))=(1/2sin(θ)cos(θ))
>>> (1/sin(2θ))=(1/sin(2θ))
VERIFIED!!!
tan(x)=1
x=pi/4+npi
x=5pi/4+npi
sin2θ=1 on the interval of [0, 2pi]
pi/4
3pi/4
5pi/4
7pi/4
If sinθ=7/25 and π/2<θ<π, what is cosθ ?
-24
___
25
cos(θ)cos(a)+sin(θ)sin(a)
cos(θ-a)
True or False?
(cscθ+cotθ)(cscθ-cotθ)=1
SHOW YOUR WORK
True!
(cscθ+cotθ)(cscθ-cotθ)=1
> csc2θ+cscθcotθ-cscθcotθ-cot2θ=1
>> csc2θ-cot2θ=1
>>> 1=1
cos(2x)=1/2
x=pi/12+npi
x=5pi/6+npi
cos4θ=-1 on the interval of [0, pi]
3pi/16
7pi/16
11pi/16
15pi/13
If sinθ =-7/25 and π/2<θ<π, what is tan2θ ?
336
___
527
sin(a-θ)
sin(a)cos(θ)-cos(a)sin(θ)
VERIFY: tan(x/2)=sin+((1-sin2x)/sinx)-cotx
(sinx/sinx)sinx+((1-sin2x)/sinx)-cotx
sin2x/sinx+((sin2x+cos2x-sin2x)/sinx)-cosx/sinx
(sin2x+cos2x-cosx)/sinx
(1-cosx)/sinx=tan(x/2)
VERIFIED!!
sin(x/2)=sqrt2/2
x=pi/2+4npi
x=3pi/2+4npi
sin(4θ-pi/2)=-1 on the interval of [0, 2pi]
0
pi/2
pi
3pi/2
2pi
cosβ=80/89 , 3π/2<β<2π
sinθ=7/25 , π/2<θ<π
What is cos^2(β+θ) ?
141376/4950625
tan(θ+a)
tan(θ)+tan(a)
____________
1-tan(θ)tan(a)
tanx(3-tan2x)
VERIFY: tan(3x)= ____________
(1-3tan2x)
{solving tan(3x) }
=(tan2x+tanx)/[1-(tan(2x)tan(x))]
>={(2tanx)/(1-tan2x)+(tanx)}/{1-(tanx)(2tanx/1-tan2x)}
>={(2tanx)/(1-tan2x)+(tanx(1-tan2x)/(1-tan2x))}/{(1-tan2x/1-tan2x)-((tanx2tanx)/1-tan2x)}
>=(2tanx+tanx-tan3x)/(1-tan2x-2tan2x)
>=(3tanx-tan3x)/(1-3tan2x)
tanx(3-tan2x) tanx(3-tan2x)
____________ = ____________
(1-3tan2x) (1-3tan2x)
VERIFIED!!!
cot2(3x)= 3
x=pi/18+2/3npi
x=5pi/18+2/3npi
x=7pi/18+2/3npi
x=11pi/18+2/3npi
sin2θsinθ=cosθ on the interval of [0, 2pi]
pi/4
2pi/4
3pi/4
5pi/4
6pi//4
7pi/4
tanα=-8/15 , π/2<α<π
cos(4α) ?
-31679/83521
tan{ (pi/6) + (3pi/2) }
1-{sqrt(-3)}
_________
1+{sqrt(-3)}
VERIFY: cosx-sinx=(cos2x-sin2x)/cosx+sinx
{cosx-sinx=(cos2x-sin2x)/cosx+sinx}
= cosx-sinx=(cos(2x))/cosx+sinx
>= (cosx-sinx)*(cosx+sinx)={(cos(2x))/cosx+sinx}*(cosx+sinx)
>= cos2x-sin2x=cos(2x)
>= cos2x-sin2x=cos2x-sin2x
VERIFIED!!!
sin(1/3x-pi/6)=1
x=9pi/2+6npi
csc22θ-4=0 on the interval of [0,2pi]
pi/12
5pi/12
7pi/12
11pi/12
13pi/12
17pi/12
19pi/12
23pi/12
tanα=-65/72 , π/2<α<π
cosβ=80/89 , 3π/2<β<2π
sinθ=7/25 , π/2<θ<π
What is {tan(α-β+θ)}{sin(α+θ)}?
-1972282781850878813122296
__________________________
2235760260012388477485000
cos(465o)
{sqrt(2)} - {sqrt(6)}
_______________
4