Evaluating Functions
Inequalities
Exponents
Key Features of Functions
Logs
100

Given the function  f(x) = 3x + 2 , evaluate  f(4).  

 f(4) = 3(4) + 2 = 12 + 2 = 14

100

Solve the inequality  2x - 5 > 3

x>4

Graph:Open circle at x = 4, shaded to the right

Interval Notation:  (4, ∞) 

100

Simplify -7a2b – 2a2b.

-9a2b

100

What is the domain? 

-∞<x<∞

(-∞,∞)

100

Write in logarithmic form: 82=64

log864=2

200

Given the function  g(x) = x^2 - 4x + 5 , evaluate  g(3). 

 g(3) = (3)^2 - 4(3) + 5 = 9 - 12 + 5 = 2 .

200

Solve the inequality  2x - 5 > x + 3

x>8

Graph: Open circle on 3, shaded to the right

Interval: (8, ∞)

200

Simplify (3x2y2)0

1

200

What is the range?

-3≤y<∞

[-3,∞)

200
Evaluate: log981=x

x=2

300

Given the function  h(x) =(2x + 1)/(x - 3) , evaluate  h(5) .

 h(5) = (2(5) + 1)/(5 - 3) = (10 + 1)/(2) = 11/2 = 5.5

300

Solve the inequality -2(x–5)≤4

x≥3

Graph: Closed circle on 3, shaded to the right

Interval: [3,∞)

300

Simplify (5ab)•(-2a2b)3

-40a7b4

300

What is the least possible degree of the polynomial function that produces this graph? Why?

3, because there are 3 roots. 

300

Condense: 3•log 2 + log(x – 4)

log(8x –32)

400

Given the functions  f(x) = x2 + 1  and  g(x) = √(x) , evaluate  (f (g(4)) .

First, evaluate  g(4) = √4 = 2 . Then, evaluate  f(g(4)) = f(2) = (2)2 + 1 = 4 + 1 = 5 .

400

Solve the inequality 2(4x – 3) ≤ 5x – 27.

x≤ -7

Graph: closed circle on -7, shaded to the left. 

Interval: (-∞,-7]

400

Solve: 53x-1•52x-5=5x+6

x=3

400

State the roots (or zeros) of the polynomial function in point form.

(-1,0), (1,0), and (2,0)

400

Solve: log4(5x+7)=log4(2x+31)

x=8

500

Given the functions  f(x) = x2 + 1 ,  g(x) = √(x) , and  h(x) = 3x + 2 , evaluate f(g(h(2)).

First, evaluate h(x) when x = 2, h(2) = 3(2) + 2 = 6 + 2 = 8. 

Next, evaluate  g(h(x)) = g(8): g(8) = √(8) = 2√(2).

Then, evaluate  f(g(h(x))) = f(2√(2): f(2√(2)) = (2√2)^2 + 1 = 8 + 1 = 9


500

Solve the inequality: 4x + 7(3x –3)≤ 9 – 5x.

x≤1

Graph: Closed circle on 1, shaded to the left. 

Interval: (-∞,1]

500

Solve: 32x+6•(1/2)=8x-1

x=-16

500

List all relative extrema for the function. Write your answers in point form. [You may have to estimate some points.]

Relative max: (-0.2, 2.1)

Relative min: (1.5, -0.6)

500

Solve: log2(9m+2)=7

m=14

M
e
n
u