Graphing Absolute
Value Functions
Solving Absolute Value Equations
Solving Absolute Value Inequalities
Absolute Value Transformations
100

Identify the vertex and slope of the following function.

y= |x-3|+4


Vertex : (3,4).      Slope: 1

100

Solve the absolute value equation ALGEBRAICALLY

-5|x-10|-15=0

-5 |x - 10| - 15 = 0

               + 15    +15

  -5 | x - 10| = 15

(-5|x-10|)/-5= 15/-5

|x-10| = -3


No    Solution

100

Solve the absolute value inequality by GRAPHING

|x-2|+3<7

-2 < x< 6

100

Identify all the transformations for the absolute value function.

y = |x| - 4 

Translates down 4 units

200

Identify the vertex and slope of the following function.

y=-|x-4|+1

Vertex: (4,1).       Slope: -1

200

Solve the absolute value equation by GRAPHING

|x+1|-4=1

x=-6 and x=4

200

Solve the absolute value inequality ALGEBRAICALLY

|x+4|-22 > -18

|x + 4| - 22 > - 18

           + 22    + 22

|x + 4| > 4 

x + 4 > 4                    x + 4 < - 4

    - 4    - 4                     - 4     - 4 

   x > 0             or            x < -8

200

Identify all the transformations for the absolute value function.

y = |x + 2| + 10

1. Translates left 2 units

2. Translates up 10 units

300

Identify the vertex and slope of the following function.

y=2|x+5|-3

Vertex: (-5,-3).      Slope: 2

300

Solve the absolute value equation by GRAPHING

-3|x+3|+3=-3

x = -5 and x = -1

300

Solve the absolute value inequality by GRAPHING

2|x+3|-3>=5

x <=-7 or x>=1

300

Identify all the transformations for the absolute value function.

y= - 1/2| x - 5| + 8

1. Reflects over x-axis

2. Vertical Compression by a factor of 1/2

3. Translates right 5 units

4. Translates up 8 units

400

Identify the vertex and slope of the following function.

y= 3|x+2|-5


Vertex: (-2,-5)    Slope: 3

400

Solve the absolute value equation ALGEBRAICALLY

2|x-12|+5 = 15

2|x-12|+5 = 15

          -5     -5

   2|x-12| = 10

(2|x-12|)/2=10/2

x-12 = 5                x-12 = -5

 +12   +12                +12    +12

x = 17        and          x = 7   

400

Solve the absolute value inequality ALGEBRAICALLY

5|7x-7|+8<=43


5|7x-7|+ 8 ≤  43

            - 8     - 8

       5|7x-7|≤ 35

(5|7x-7|)/5 <= (35)/5

       |7x-7| ≤ 7

7x -  7 ≤ 7                7x - 7 ≥ -7

    + 7    +7                  + 7    +7

   7x  ≤  14                     7x ≥ 0

(7x)/7 <= 14/7                 (7x)/7 >= (0)/2

x<= 2                        x>= 0

0<= x <= 2

400

Identify all the transformations for the absolute value function.

y = 3 | -(x + 3)| - 2

1. Vertical stretch by a factor of 3

2. Reflects over y-axis

3. Translates left 3 units

4. Translates down 2 units

500

Identify the vertex and slope of the following function.

y=-2|x-2|+4

Vertex: (2,4).     Slope: -2

500

Solve the absolute value equation ALGEBRAICALLY

4-5|10-5x|=-51

Work will be on the board

x=-1/5 and x= 21/5

500

Solve the absolute value inequality ALGEBRAICALLY

-3|1+2x|+2> -43

- 3 |1+2x|+ 2 >  - 43

                - 2        - 2

       -3|1+2x| > - 45

(-3|1+2x|)/-3 < (-45)/-3

       |1+2x| < 15

1 + 2x < 15                1 + 2x > -15

-1            -1               -1             -1 

   2x < 14                        2x > -16

(2x)/2<14/2                 (2x)/2 > (-16)/2

x<7                        x> -8

-8<x<7

500

Identify all the transformations for the absolute value function.

y= -5|1/2(x+6)|-11

1. Reflects over x-axis

2. Vertical Stretch by a factor of 5

3. Horizontal Stretch by a factor of 2 

4. Translates left 6 units

5. Translates down 11 units

M
e
n
u