Given f(x) = 6/(x-3):
Find f(-3)
f(-3) = -1
Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find g+h(x)
g+h(x) = x^2 + 4x - 6
Given f(x) = 6/x and g(x) = 4x+3:
Find f o g(x) --> f(g(x))
f o g(x) = 6/(4x+3)
See Domain / Range Doc:
What is the domain of the first graph?
domain: (-inf, inf)
Given g(x) = 3x^2 + 4x - 1:
Find g(4)
g(4) = 63
Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find g-h(x):
g-h(x) = 5x^2 +4x + 4
Given g(x) = 4x+3 and f(x) = 6/x:
Find f(g(3))
f(g(3)) = 2/5
See Domain / Range Doc:
What is the Range of the first graph?
Range: [0, inf)
Given f(x) = 6/(x-3):
Find f(x+3)
f(x+3) = 6/x
Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find f/g(x):
f/g(x) = (3x^2 + 4x - 1) / (-2x^2 -5)
Given h(x) = 2x^2 and j(x) = sqrt(x+4):
Find j(h(x)):
j(h(x)) = sqrt(2x^2 + 4)
See domain / range doc:
What is the range of graph 2?
Range: [0,inf)
Given: h(x) = -2x^2 - 5:
Find h(4x):
h(4x) = -32x^2 - 5
Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find f * g(x)
f*g(x) = -6x^4 - 8x^3 - 13x^2 -20x +5
Given h(x) = 2x^2 and j(x) = sqrt(x+4):
Find h(j(x)):
h(j(x)) = 2x+8
See Domain / Range Doc: What is the domain of graph 2?
Domain: [2,inf)
Given f(x) = 6/(x-3):
Find -f(x):
-f(x) = -(6/(x-3))
Given g(x) = 3x^2 + 4x - 1 and h(x) = -2x^2 - 5:
Find g-h(3):
g-h(3) = 61
Given: k(x) = x/(x-2) and j(x) = 2x^2:
Find k(j(x))
What is the range of graph 3?
Range: (-inf, inf)