Linear and Quadratics
Higher Order Polynomials
Rational Exponents and Radicals
Exponents and Logs
Rationals
100

Factor:  5x^2 -41x-36 

(5x+4)(x-9)

100

Find the roots from the graph: 


x=-8, -4, 2, 8

100

Simplify the radical:

∛(128u^6v)

4u∛(2v)

100

Evaluate the expression. 

log_7(343)

3

100

Simplify the expression and state any domain restrictions: 

(x^2+3x-70)/(x^2-9x+14)

(x+10)/(x-2), x≠7,2

200

Solve:  2x^2 -1=41 

x=+-sqrt(21)

200

Factor:  3x^3+81 

3(x+3)(x^2 -3x+9)

200

Simplify the radical: 

∜(486x^2y^7)

3y∜(6x^2y^3)

200

Condense the expression to a single logarithm.

10log_5(x)+2log_5(y)

log_5(x^10y^2)

200

Simplify the expression. 

(x+5)/(x+6)*(x^2+9x+18)/(x+3)

x+5

300

Identify how many solutions there are by using the discriminant: 

2x^2+4x-5=-7

Discriminant = 0; 

There is one real solution

300

Divide the polynomials using synthetic division: 

(x^3-14x^2+49x-10)÷(x-8)

x^2-6x+1+(-2)/(x+8)

300

Simplify.  Your answer should contain only positive exponents.

(3x^2y^-2z^3)^-3

(y^6)/(27x^6z^9)

300

Expand each logarithm.

log_4(xy^3)^4

4log_4(x)+12log_4(y)

300

Simplify the expression. 

(x^2+9x+14)/(5x^2-25x)÷ (x^2+17x+70)/(x^2+5x-50)

(x+2)/(5x)

400

Solve by taking the square root: 

2x^2-7=-33

x=+-isqrt13

400

Solve by factoring:  x^4-4x^2-45 

x= +-3, +-isqrt(5)

400

Simplify.  Your answer should contain only positive exponents.

(2x^2y^5z^-2)^3/(2x^4z^5)

(4x^2y^15)/z^11

400

Solve the equation: 

-4+log_6(8x)=0

x=162

400

Simplify the expression. 

(2n)/(3n+2)-(5)/(n+6)

(2n^2 -3n-10)/((n+6)(3n+2)

500

Solve using the quadratic formula: 

6x^2-8x=-11

x=(4+-5isqrt2)/6

500

Solve by factoring:  x^3-8=0 

x=2, -1+-isqrt3

500

Simplify.  Your answer should contain only positive exponents.

(nm^2 p^4)/(2m^-1n^0p^2)^4

(m^6n)/(16p^4)

500

Solve the equation: 

log_4(x+6)-log_4(9)=2

x=138

500

Solve the following rational equation. Check for extraneous solutions. 

1/(x+5)=(6)/(x+7)-(x+4)/(x^2+12x+35)

x=-19/4

M
e
n
u