Take it to the Limit
Warning: Contains Implicit Material
It's Critical
Deriv Applications
You get the graph!
These are triggy
100

lim_(x->4) (x^2-7x+12)/(x-4)

1

100

If  2x^2+5y^2-2xy=5 

(dy)/(dx)=

(2y-4x)/(10y-2x)=(y-2x)/(5y-x)

100

Find the critical values of

f(x)=2x^3-3x^2-12x+7

-1 and 2

100

Find the intervals where f(x) is increasing

f(x)=2x^3-3x^2-12x+7

(oo,-1],(2,oo)

100

Given f'(x), find the x-value of any relative maximums


-1

100

f(x)=sec(2x)

f'(x)=

2sec(2x) tan(2x)

200

lim_(x->0)(5x^2+3x^5)/(2x^3-x^2)

-5

200

If  x^2+y^2+xy=3 

Find  dy/dx  at (1, 1)

-1

200

Find the critical values on  [0,2pi) 

f(x)=sin^2x

0, pi/2, pi, (3pi)/2

200

Find the x-value of any points of inflection

f(x)=2x^3-3x^2-12x+7

1/2

200

Given f'(x), how many critical points does f(x) have?

3

200

f(x)=2xcotx

f'(x)=

2cotx-2xcsc^2x

300

lim_(x->oo)((2x-3)(4-x))/((5x+1)(x+4))

-2/5

300

If  x^2+2x+y^4+4y=5 

then  dy/dx=(-(x+1))/(2(y^3+1)) 

Write the equation of the tangent line that passes through the point (-2, 1)

y-1=1/4(x+2)

300

Find the critical values

f'(x)=x(2x-3)(x^2+1)

0, 3/2

300

Find all relative extrema and classify them as minimum or maximum

f'(x)=(x-2)^2(2x+3)(x^2+3)

minimum at 

-3/2

300

Given g'(x), find the x-values of relative extrema for g(x)

none

300

f(x)=sin^2(3x+4)

f'(x)=

6sin(3x+4)cos(3x+4)

400

lim_(h->0)(3(x+h)^2-3x^2)/h

6x

400

If  x^2+2x+y^4+4y=5 

then  dy/dx=(-(x+1))/(2(y^3+1)) 

Find the two points with vertical tangents

(-4, -1) and (2, -1)

400

Find the x-value(s) of any relative minimum(s)

f(x)=2x^3-3x^2-12x+7

2

400

In right triangle ABC, where C is the right angle, leg BC is x and the hypotenuse is 5. If angle A increases at a constant rate of 3 radians per minute, at what rate is x increasing when x equals 3 units?

12

400

Given f'(x), on what interval is f(x) concave down?

x > 0

400

f(x)=sin(cos(2x))

f'(x)=

-2sin2xcos(cos2x)

500

lim_(h->0)(sin(pi/3+h)-sin(pi/3))/h

cos(pi/3)=1/2

500

If  x^2+xy=-27 

Find the 2 x-values where the tangent line is horizontal

sqrt27, -sqrt27

500

Find the absolute maximum on [-3, 4]

f(x)=2x^3-3x^2-12x+7

39 (when x=4)

500

Find the maximum acceleration on the interval [0, 3] by a particle with velocity  v(t)=t^3-3t^2+12t+4 

21 (when t=3)

500

Given f(x), which labeled x-value are f' and f'' both negative?

D

500

y=f(sin^2x)

y'=

2sinxcosxf'(sin^2x)

M
e
n
u