Properties of exponents
Polynomial Arithmetic
Polynomial Graphing
Rationals
Radicals
100

2^n*4^n

2^(3n)

100

5+2x-3x+x^2

Quartic polynomial, 4 terms 

2x^4+x^2-3x+5

100

If f(x)= (x - 2)3(x + 4)2, what are the zeros and their multiplicities?

Zeros: x=2 (mult. 3), x=−4  (mult. 2).

100

(16x^2y^3)/(28xy^5)

(4x)/(7y^2)

100

Simplify: 

root 3 (54y^3)

3y root 3 2

200

x^(-3)*x^7

x^4

200

(5a-2)+(3a+7)

8a+5

200

Describe the end behavior of

f(x)=-x^3 +4x^2 -x.

-/odd

As 

x -> infty, f(x) ->-infty

x-> -infty, f(x)-> infty

200

Multiply: 

(x^2+5x+6)/(x^2-9) * (6x-18)/(x^2-4)

6/(x-2)

200

Solve: 

sqrt(x+5)=7

x+5=49

x=44

300

(6x^4)/(3a^(-2))

2a^6

300

(4x^3-x+6)-(2x^3+3x-4)

2x^3-4x+10

300

Find the leading term of

f(x)=-3(x-1)^2(x+4)

Leading term: 

-3x^3

300

For

((x+3)(x-3))/((x-2)(x+1)) divide (x-4)/(x+5)^2

list all restrictions.

x ne -3, 3, 2, -1, 4, -5

300

(2sqrt9)(6sqrt3)

36sqrt3

400

(3y^2)^3

27y^6

400

(3x-2)(x+1)

3x^2+x-2

400

A graph bounces off the x-axis at x=−2 and crosses at x=3. Write one possible equation.

f(x)=(x+2)^2 (x−3).

400

Solve: 

8/(x+4)=5/(x-2)

x=14

400

(2+sqrt5)/sqrt5

(2sqrt5+5)/5

500

Explain why zero and negative exponents work the way they do.

When dividing powers with the same base, we subtract exponents: But any nonzero number divided by itself equals 1

negative exponents mean the reciprocal

 

500

(x+5)(2x^2-3x+4)

2x^3+7x^2-11x+20

500

Write a polynomial in factored form with zeros at −1,2,4.

f(x)=(x+1)(x−2)(x−4).

500

Describe the transformation of 

y=1/(x+5)-4

Left 5, Down 4

500

Sketch the graph

y=sqrt(x+3) +5

M
e
n
u