Trig Functions
Transformations
Exponent Laws
Rational Expressions
Quadratics/Radicals
100

y=3cos1/4(x-50)

state the amplitude

A = 3

100

what is the vertical stretch

g(x) = 2f(x) - 5

vertical stretch bafo 2

100

8x3 x 7x4

=

56x7

100

(3n-4)2

=

9n2-24n+16

100

2x2-22x+48=0

what are the two x values?

x1 = 8 

x2 = 3

200

y=3cos1/4(x-50)

state the period 

360 / 1/4 = 1440

200

what is the vertical shift

g(x) = 3f(x) - 8

vertical shift down 8

200

68x10 / 17x

=

4x9

200

3m2 + 3m -6


= 3(m+ m-2)

= 3(m+ 2m - m -2)

= 3(m+2) x (m-1)

200

express the following in simplest form

√40 


= 2√10

300

how do you find the amplitude and midline when only given a max and min value

to find amplitude you do |  (max - min) /2


and to find the midline you do | (max + min) /2

300

{0. 9), (2, 7), (3, 5), (4, 3)}

is the information provided a function or not

yes


300

(2x2y)x 3x9

=

192x13y15

300

9a2 - 100

=

(3a + 10) (3a - 10)

300

express the following in simplest form


(2+4√3)(2-4√3)

= - 44

400

y = -sin(4x + 28) + 1

state the range, how do you find it

range = 0 ≤ y ≤ 2

to find this you need to use the amplitude and midline numbers that they give you and find the max and min

a = 1 c = 1

400

list the asymptotes for the following equation

h(x) = 1/(x-4) + 2

Y = 2 

x = 4

400

(3/8)-2

=

64/9

400

25x2 + 25x + 100

= 25(x2 + x + 4)

400

will the following function have a max or min value?

 f(x) = 3(x − 1)(x + 5)

= Minimum value

500

tan2(x) - sin2(x) = tan2(x)sin2(x)

=

change rs

=[1-cos2(x)]tan2x

=tan2x - cos2x(tan2x)

=tan2(x) - sin2(x)         Ls = Rs

500

a function reflected in the x axis, vertical stretch bafo 3, horizontal compression bafo 1/3, horizontal translation 9 units right, vertical shift 4 units down

determine the equation^

y = -3 √3(x-9)  - 4

500

3-5/ (3-4 + 3-6)

=

3/10

500

9x2 + 48x + 60

= 3(3x+ 16x + 20)

= 3(3x+ 10x + 6x + 20)

= 3(3x+10)+(x+2)

500

Calculate the value of k such that kx2 − 4x + k = 0 has one root.

K = +- 2

M
e
n
u