U-substitution
Integration By Parts
Determine "u"
Surprise
Mathematical Definitions
100

∫sec2x√(tanx)dx

(2/3)(tanx3/2) + c

100

∫3t(e2t)dt

(3/2)te2t-(3/4)e2t + c 

100

∫ xcos(2x2)dx

u = 2x2

100

∫dx/3√(3x+4)

(1/2)(3x+4)2/3

100

indefinite integral of f with respect to x

∫f(x)dx = F(x) + c

F'(x) = f(x)

200

∫tan(4x+2)dx

-(1/4)ln|cos(4x+2)| + c

200

∫ylnydy

(y2/2)lny - (y2/4) + c

200

∫sec(2x)tan(2x)dx

u = 2x

200

∫x3cosxdx

x3sinx + 3x2cosx - 6xsinx -6cosx + c

200

constant of integration

c, an arbitrary constant

300

∫(ln6x)dx/x

(1/7)(ln7x) + c

300

∫exsinxdx

(ex/2)(sinx-cosx) + c 

300

∫(9r2)dr/(√ (1-r3))

u = 1 - r3

300

∫25dx/(x2-25)

(5/2)ln|(x-5)/(x+5)|+ c

300

integration by parts formula

∫udv = uv - ∫vdu

400

∫(sin(2t+1))/(cos2(2t+1)) + c

(1/2)sec(2t+1) + c

400

∫x3e-2xdx

e-2x(-x3/2 - 3x2/4 - 3x/4 - 3/8) + c

400

∫dx/(x2+9)

u = x/3

400

∫exsec(ex)dx

ln|sec(ex)+tan(ex)|+ c

400

tabular integration

a way to organize calculations of integration by parts 

f(x) and its derivatives   g(x) and its integrals

x2                                  ex

2x                                  ex

2                                    ex

0                                    ex

xmultiplies diagonally with ex, followed by 2x and 2. The values are added alternating positive and negative.

500

∫xdx/(x2+1)

(1/2)ln(x2+1) + c

500

∫xsin5xdx

-(x/5)cos5x + (1/25)sin5x + c 

500

∫8(y4+4y2+1)2(y3+2y)dy

u = y4+4y2+1

500

∫x2e-3xdx

e-3x(-x2/3 - 2x/9 -2/27) + c

500

LIATE

the order of choosing "u"

L. logarithmic functions

I. inverse trig functions

A. algebraic functions

T. trig functions

E. exponential functions

Highest priority (L) to lowest priority (E)

M
e
n
u