Parallel and Perpendicular lines
Apply the rule (find the new points)
Area Model or Distribution
Solve for x:
100

Find the equation of the line parallel to y= (1/2)x +2 that passes through the point (4, -5)

y = (1/2)x -7

100

Use an area model or distribution to multiply:

8(2x +1)

16x +8

200

Find the equation of the line parallel to y= -4x +1 that passes through the point (3, -6)

y = -4x + 6

200

Rule: (x,y) ----> (x-8, y+1)

A (1, 2) ---> A' (    ,    )

B (5,2) ---> B' (    ,    )

C (3,6) ---> C' (    ,    )

Rule: (x,y) ----> (x-8, y+1)

A (1, 2) ---> A' ( -7 , 3)

B (5,2) ---> B' ( -3 , 3)

C (3,6) ---> C' ( -5, 7)

200

Use an area model or distribution to multiply:

(x+6)(x-8)

x- 2x - 48

300

Find the equation of the line perpendicular to y= 5x +5 that passes through the point (10, 3)

y = (-1/5)x + 5

300

Rule: (x,y) ----> (-x, y)

A (-6, 1) ---> A' (  , )

B (-4, -3) ---> B' (  , )

C (-1, 1) ---> C' (  ,  )

Rule: (x,y) ----> (-x, y)

A (-6, 1) ---> A' ( 6 , 1)

B (-4, -3) ---> B' ( 4 , -3)

C (-1, 1) ---> C' ( 1, 1)

300

Use an area model or distribution to multiply:

(9x +7)(3x -2)

27x2 +3x -14

300

Solve for x:

x2 + 3x + 4 = (x-4)(x+5)

x= -12

400

Find the equation of the line perpendicular to y= (-1/3)x +5 that passes through the point (4, 8)

y = 3x - 4

400

Use an area model or distribution to multiply:

(x+3)(5x - y + 1)

x2- xy +16x - 3y +3

400

Solve for x:

3x2 + 18x + 6 = (3x-6)(x+5)

x = -4

M
e
n
u