Review
Implicit differentiation
exponential functions
Inverse functions & Logs
Derivatives of Logs and exponents
100

csc(3π/2)

-1

100

Find y'

2y3+4x2-y=x6

y'=(6x5-8x)/(6y2-1)

100

Log3/8(27/512)=

3

100

expand

Log7(10a7b3c-8)

Log7(10)+7Log7(a)+3Log7(b)-8Log7(c)

100

f(x)=9Log4(x)+12Log11(x)

What f'(x)

f'(x)=9/(x*Ln(4)) +12/(x*Ln(11))

200

Limx->∞ (11+8x)/(x3+7x)

0

200

Find y'

7y2+sin(3x)=12-y4

y'=(-3cos(3x))/(14y+4y3)

200

How has f(x) shifted from the parent function y=2x

f(x)=31+x

left 1 unit

vertical stretch by factor of 3/2

200

expand

Log[z2(x2+4)3]

2Log(z)+3Log(x2+4)

200

h(t)=6t-4et

What is h'(t)

h'(t)=6tLn(t) - 4et

300

h(t)=t3-t2cos(t)

h'(t)=3t2-2tcos(t)+t2sin(t)

300

Find y'

4x2y7-2x=x5+4y3

y'=(-8xy7+5x4+2)/(28x2y6-12y2)

300

How has h(x) shifted from the parent function y=2x

h(x)=23-x-7

left 3 units

rotate about the y-axis

vertical shift down 7 units

300

expand

Ln[(w2t3/4)/(t+w)1/2]

2Ln(w)+(3/4)Ln(t)-(1/2)Ln(t+w)

300

R(t)=(t2-6t+3)*et

What is R'(t)

R'(t)=(2t-6)et + (t2-6t+3)et

400

f(x)=((2x)/(x2+1))3

What is f'(x)

f'(x)=3((2x)/(x2+1))2*((-2x2+2)/(x2+1)2)

400

Find y'

ex-sin(y)=x

y'=(1-ex)/(-cos(y))

400

How has h(t) shifted from the parent function y=et

h(t)=8+3et-4

vertical shift 8 units up

vertical stretch by a factor of 3

horizontal shift 4 units right

400

combine into one logarithm

7Ln(t)-6Ln(s)+5Ln(w)

Ln(t7s-6w5)

400

Daily Double (Max bet: 1000)

Find the derivatives of the four functions

1) f(x)=ax

2) g(x)=Loga(x)

3) h(x)=Ln(x)

4)s(x)=ex

500

f(w)=tan(w)sec(w)

What is f'(x)

f'(w)=sec3(w)+tan2(w)sec(w)

500

Daily Double

Find y'

cos(x2+2y)+xey^2=1

y'=(2xsin(x2+2y)-ey^2)/(-2sin(x2+2y)+2yxey^2)

500

How has g(z) shifted from the parent function y=ez

g(z)=10-(1/4)e-2-z

vertical shift up 10 units

vertically shrink by factor of 4

rotate about the x-axis

rotate about the y-axis

horizontal shift 2 units right

500

combine into one logarithm

2Log3(x+y)+6Log3(x)-(1/3)

Log3[(x+y)2x6*3-1/3]

500

g(r)=[r2+Log7(r)]/[7r]

what is g'(r)

g'(r)=[7r(2r+(rLn(7))-1-(7rln(7))(r2+Log7(r))]/[72r]

M
e
n
u