VERTEX
FACTOR
FOIL
Radicand
ZEROS
100

y = x2

(0, 0)

100

x2+5x+4

(x+1)(x+4)

100

(x+3)(x+1)

x2+4x+3

100

If the radicand   b2-4ac  is positive, how many zeros are there?

2 solutions (2 zeros)

100

(x+2)(x-3)

x = -2 and 3

200

f(x) = (x-3)2 + 4

(3, 4)

200

x2+5x+6

(x+2)(x+3)

200

(x+2)(x-3)

x2-x-6

200

√(b2-4ac) / 2a is negative, there are this many zeros

zero (none) 

200

(x+3)(x-2)

x = -3 and 2

300

f(x) = (x-5)2 -7

(5, -7)

300

x2-3x-4

(x-4)(x+1)

300

(x+3)(x-3)

x2-9

300

If the radicand b2-4ac is zero, there are this many zeros

one

300

How many real solutions does this function have?

x2-6x+5

b2 - 4ac is POSITIVE: TWO solutions

400

f(x) = -2(x+3)2 + 4

(-3, 4)

400

x2-49

(x-7)(x+7)

400

(x+6)(x-6)

x- 36

400

if the radicand is positive, there are this many zeros

two

400

x2 +4x+20

b2 - 4ac is NEGATIVE:
                       NO real solutions

500

f(x) = -0.25(x-3)2 + 2

(3, 2)

500

x2-9

(x+3)(x-3)

500

(x-4)(x+4)

x2-16

500

If the radicand is negative, there are this many zeros

none

500

x2+4x+4

b2 - 4ac is ZERO: ONE real solution

M
e
n
u