Trigonometry off the Unit Circle
The Unit Circle
The Unit Circle Redux
Angles on the Coordinate Plane
Trig Equations
100

Convert to degrees

(11pi)/20

99 degrees

100

Identify the coordinate on the unit circle for the value

(5pi)/4

(-sqrt(2)/2,-sqrt(2)/2)

100

The quadrant containing points (-x,-y)

Quadrant 3

100

 P(4, 1) is a point on the terminal side of  \theta in standard form. Find the exact value of 

 tan\theta write in simplified form

tan\theta=\frac{1}{4}

100

-2+sin\theta=-3

\frac{3\pi}{2}

200

The arc length intercepted by an angle with radius 9 and degree measure of 160.

 8\pi or 25.13

200

Find 

sin(pi)

0

200

If you have a radian degress measure with a denominator of 6, what angle of a special right triangle should you be referencing?

30

200

(-4,2) is a point on the terminal side of  \theta . Find  \cos\theta. Write in simplified form.

-\frac{2\sqrt{5}}{5}

200

3-4cos\theta=7-2cos\theta

No solution

300

Find a angle measurement that is coterminal with 

 \frac{5pi}{3} in radians

Possible answers: 

...-\frac{7pi}{3},-\frac{pi}{3},..., \frac{11\pi}{3},\frac{17\pi}{3}...


300

Identify the error with this unit circle.

The 30 degree and 60 degree coordinates are switched

300

Identify the error in this unit circle

The coordinates of the axes

300

Identify the quadrant where  \theta lies if the following statements are true:

cos\theta>0, csc\theta<0

Quadrant IV

300

0=-4-4\sec\theta-sec^2\theta

\frac{2\pi}{3}, \frac{4\pi}{3}

400

Find the area of a sector of a circle that has a radius of 6 meters and a measure of  \frac{2\pi}{3} radians.

 12\pi or 37.7 m^2

400

Evaluate 

sec((-4pi)/3)


-2

400

tan((7pi)/2)

undefined

400

If  csc(x)=5/4  and tan(x)<0,  find cot(x)

cot\theta=-\frac{3}{4}

400

\frac{\pi}{2},\frac{5\pi}{6},\frac{3\pi}{2},\frac{11\pi}{6}

500

If cosine of x is -2/3 and cotangent of x is positive, which quadrant does x lie in?

Quadrant 3

500

 \cot(\theta)=-\sqrt{3} for  0°\le\theta<360° 

150° and 330°

500

\csc\frac{16\pi}{3}

(-2sqrt(3))/3

500

If  secx=-\frac{\sqrt{65}}{4} and csc(x)<0,  find tan(x)

\frac{7}{4}

500

\frac{\sin^2x-9){sinx-3)=2

x=\frac{3\pi}{2}

M
e
n
u