Circles & Polygons
Volume
Surface Area
Composite Shapes
100

Find the area of sector GCH below. Round to two decimal places and include units. 

A = \theta/360\times\pir^2

A = 75/360\times\pi(5)^2

A = 16.36 cm^2

100

Find the volume of the oblique triangular prism below. 

V=Bh

V=(1/2\times7\times10)(5)

V=175 ` cubic inches`

100

Find the surface area of the square-based pyramid below. 


SA=(5)^2 + 4(1/2\times5\times8)

SA=25+4(20)

SA=105 cm^2

100

Find the volume of the solid below. Round to two decimal places.  

V=2(1/3Bh)

V=2(1/3(8^2)(5))

V=213.33 cm^3

200

Find the area of the regular dodecagon (12 sides) below. The length of each side is 9 inches. 

tan(15)=4.5/a

a=4.5/tan(15)=16.79

A_t=1/2(9)(16.79)=75.57

A_d=75.57\times12=906.89` sq.in.`

200

Find the height of the cylinder below. 

V=pir^2h

4608pi=pi(12)^2h

4608=144h

h=32 ` inches`

200

Find the surface area of this hemisphere. Leave your answer in terms of pi. 

SA=1/2(4pir^2)+pir^2

SA=2pi(6)^2+pi(6)^2

SA=72pi+36pi=108pi` sq. in.`

200

Find the volume of the composite shape below. 

V_(Cyl)=1/2(pir^2h)

V_(Cyl)=1/2(pi(2)^24)

V_(Cyl)=25.13

V_(Cu)=Bh=(4^2)(4)=64

V=64+25.13

V=89.13` cubic inches`

300

Find the radius of the circle below given the central angle and arc length of the major (larger) arc LM.

AL = \theta/360\times2pir

38.95=260/360\times2pir

38.95=4.538r

r=8.58 cm

300

Find the volume of the sphere below. 

C=2pir

7pi=2pir

7=2r

r=3.5

V=4/3pir^3

V=4/3pi(3.5)^3

V=179.59` cubic inches`

300

The cone below has a volume of 216π in3. Find the surface area. 

V=1/3pir^2h

216pi=1/3pir^2(18)

216=6r^2

36=r^2 ` so ` r=6

6^2+18^2=l^2

l=18.97

SA=pir^2+pirl

SA=pi(6)^2+pi(6)(18.97)

SA=470.74` sq. in.`

300

*DAILY DOUBLE*

Find the surface area of the composite solid below. Round to two decimal places. 

SA_[Co]=pirl

SA_[Co]=pi(3)(3\sqrt(2))

SA_[Co]=39.99 cm^2

SA_[Cyl]=pir^2+2pirh

SA_[Cyl]=pi(3)^2+2pi(3)(7)

SA_[Cyl]=160.22 cm^2

SA = 200.21 cm^2

400

Find the area of a regular icosagon (20 sides) with a perimeter of 160 feet. 

`Each side`= 160/20=8` ft`

`Each triangle`=360/20=18^o

tan(9) = 4/a

a = 4/tan(9) = 25.255

A_T = 1/2(8)(25.255) = 101.02

A_I = 101.02\times 20 = 2020.4 ft^2

400

Find the volume of the square-based pyramid below. 


h^2+2.5^2=8^2

h=7.6

V=1/3Bh

V=1/3(5^2)(7.6)

V=63.33 cm^3

400

Find the surface area of the green solid shown below. Round to two decimal places. 


SA=2(`sector`)+2(`flat side`)+` curved side`

A_S=78/360\timespi(4)^2

A_S=10.89

A_[FS]=4\times 10=40

`Arc`=78/360\times2pi(4)

`Arc`=5.445

A_[CS]=5.445\times 10 = 54.45

SA=2(10.89)+2(40)+54.45

SA= 156.24 m^2

400

Find the volume of the shape below.

 

V_C=Bh=(12^2)12=1728

`Pyramid base side length`

s=6\sqrt(2) ` (isosceles)`

V_P=1/3Bh

V_P=1/3(6\sqrt(2))^2(12)

V_P=288

V=1728-288=1440` cubic inches`

500

***FINAL JEOPARDY***

Find the surface area of the hexagonal pyramid below. 

L^2=sqrt(3)^2+3^2

L=3.46

A_H=1/2(2)(\sqrt(3))\times 6

A_H=10.39

A_T=(1/2)(2)(3.46)\times 6

A_T=20.78

SA=10.39+20.78=31.18` sq. in.`

M
e
n
u