Find the area of sector GCH below. Round to two decimal places and include units.
`A = \theta/360\times\pir^2`
`A = 75/360\times\pi(5)^2`
`A = 16.36 cm^2`
Find the volume of the oblique triangular prism below.
`V=Bh`
`V=(1/2\times7\times10)(5)`
`V=175 ` cubic inches``
Find the surface area of the square-based pyramid below.
`SA=(5)^2 + 4(1/2\times5\times8)`
`SA=25+4(20)`
`SA=105 cm^2`
Find the volume of the solid below. Round to two decimal places.
`V=2(1/3Bh)`
`V=2(1/3(8^2)(5))`
`V=213.33 cm^3`
Find the area of the regular dodecagon (12 sides) below. The length of each side is 9 inches.
`tan(15)=4.5/a`
`a=4.5/tan(15)=16.79`
`A_t=1/2(9)(16.79)=75.57`
`A_d=75.57\times12=906.89` sq.in.``
Find the height of the cylinder below.
`V=pir^2h`
`4608pi=pi(12)^2h`
`4608=144h`
`h=32 ` inches``
Find the surface area of this hemisphere. Leave your answer in terms of pi.
`SA=1/2(4pir^2)+pir^2`
`SA=2pi(6)^2+pi(6)^2`
`SA=72pi+36pi=108pi` sq. in.``
Find the volume of the composite shape below.
`V_(Cyl)=1/2(pir^2h)`
`V_(Cyl)=1/2(pi(2)^24)`
`V_(Cyl)=25.13`
`V_(Cu)=Bh=(4^2)(4)=64`
`V=64+25.13`
`V=89.13` cubic inches``
Find the radius of the circle below given the central angle and arc length of the major (larger) arc LM.
`AL = \theta/360\times2pir`
`38.95=260/360\times2pir`
`38.95=4.538r`
`r=8.58 cm`
Find the volume of the sphere below.
`C=2pir`
`7pi=2pir`
`7=2r`
`r=3.5`
`V=4/3pir^3`
`V=4/3pi(3.5)^3`
`V=179.59` cubic inches``
The cone below has a volume of 216π in3. Find the surface area.
`V=1/3pir^2h`
`216pi=1/3pir^2(18)`
`216=6r^2`
`36=r^2 ` so ` r=6`
`6^2+18^2=l^2`
`l=18.97`
`SA=pir^2+pirl`
`SA=pi(6)^2+pi(6)(18.97)`
`SA=470.74` sq. in.``
*DAILY DOUBLE*
Find the surface area of the composite solid below. Round to two decimal places.
`SA_[Co]=pirl`
`SA_[Co]=pi(3)(3\sqrt(2))`
`SA_[Co]=39.99 cm^2`
`SA_[Cyl]=pir^2+2pirh`
`SA_[Cyl]=pi(3)^2+2pi(3)(7)`
`SA_[Cyl]=160.22 cm^2`
`SA = 200.21 cm^2`
Find the area of a regular icosagon (20 sides) with a perimeter of 160 feet.
``Each side`= 160/20=8` ft``
``Each triangle`=360/20=18^o`
`tan(9) = 4/a`
`a = 4/tan(9) = 25.255`
`A_T = 1/2(8)(25.255) = 101.02`
`A_I = 101.02\times 20 = 2020.4 ft^2`
Find the volume of the square-based pyramid below.
`h^2+2.5^2=8^2`
`h=7.6`
`V=1/3Bh`
`V=1/3(5^2)(7.6)`
`V=63.33 cm^3`
Find the surface area of the green solid shown below. Round to two decimal places.
`SA=2(`sector`)+2(`flat side`)+` curved side``
`A_S=78/360\timespi(4)^2`
`A_S=10.89`
`A_[FS]=4\times 10=40`
``Arc`=78/360\times2pi(4)`
``Arc`=5.445`
`A_[CS]=5.445\times 10 = 54.45`
`SA=2(10.89)+2(40)+54.45`
`SA= 156.24 m^2`
Find the volume of the shape below.
`V_C=Bh=(12^2)12=1728`
``Pyramid base side length``
`s=6\sqrt(2) ` (isosceles)``
`V_P=1/3Bh`
`V_P=1/3(6\sqrt(2))^2(12)`
`V_P=288`
`V=1728-288=1440` cubic inches``
***FINAL JEOPARDY***
Find the surface area of the hexagonal pyramid below.
`L^2=sqrt(3)^2+3^2`
`L=3.46`
`A_H=1/2(2)(\sqrt(3))\times 6`
`A_H=10.39`
`A_T=(1/2)(2)(3.46)\times 6`
`A_T=20.78`
`SA=10.39+20.78=31.18` sq. in.``